Skip to main content

Advertisement

Log in

Identification and characterization of a novel variant of the human P2X7 receptor resulting in gain of function

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The P2X7 receptor exhibits significant allelic polymorphism in humans, with both loss and gain of function variants potentially impacting on a variety of infectious and inflammatory disorders. At least five loss-of-function polymorphisms (G150R, R307Q, T357S, E496A, and I568N) and two gain-of-function polymorphisms (H155Y and Q460R) have been identified and characterized to date. In this study, we used RT-PCR cloning to isolate and characterize P2X7 cDNA clones from human PBMCs and THP-1 cells. A previously unreported variant with substitutions of V80M and A166G was identified. When expressed in HEK293 cells, this variant exhibited heightened sensitivity to the P2X7 agonist (BzATP) relative to the most frequent allele, as shown by pore formation measured by fluorescent dye uptake into cells. Mutational analyses showed that A166G alteration was critical for the gain-of-function change, while V80M was not. Full-length variants with multiple previously identified nonsynonymous SNPs (H155Y, H270R, A348T, and E496A) were also identified. Distinct functional phenotypes of the P2X7 variants or mutants constructed with multiple polymorphisms were observed. Gain-of-function variations (A166G or H155Y) could not rescue the loss-of-function E496A polymorphism. Synergistic effects of the gain-of-function variations were also observed. We also identified the A348T alteration as a weak gain-of-function variant. Thus, these results identify the new gain-of-function variant A166G and demonstrate that multiple-gene polymorphisms contribute to functional phenotypes of the human P2X7 receptor. Furthermore, the results demonstrate that the C-terminal of the cysteine-rich domain 1 of P2X7 is critical for regulation of P2X7-mediated pore formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PI:

Propidium iodide

BzATP:

2′,3′-O-(4-benzoyl-benzoyl) ATP

SNP:

Single-nucleotide polymorphism

MFI:

Mean of fluorescence intensity

References

  1. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    Article  CAS  PubMed  Google Scholar 

  2. Roberts JA, Vial C, Digby HR, Agboh KC, Wen H, Atterbury-Thomas A, Evans RJ (2006) Molecular properties of P2X receptors. Pflugers Arch 452:486–500

    Article  CAS  PubMed  Google Scholar 

  3. Egan TM, Cox JA, Voigt MM (2004) Molecular structure of P2X receptors. Curr Top Med Chem 4:821–829

    Article  CAS  PubMed  Google Scholar 

  4. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    CAS  PubMed  Google Scholar 

  5. Vial C, Roberts JA, Evans RJ (2004) Molecular properties of ATP-gated P2X receptor ion channels. Trends Pharmacol Sci 25:487–493

    Article  CAS  PubMed  Google Scholar 

  6. Bretschneider F, Klapperstuck M, Lohn M, Markwardt F (1995) Nonselective cationic currents elicited by extracellular ATP in human B-lymphocytes. Pflugers Arch 429:691–698

    Article  CAS  PubMed  Google Scholar 

  7. Gunosewoyo H, Coster MJ, Kassiou M (2007) Molecular probes for P2X7 receptor studies. Curr Med Chem 14:1505–1523

    Article  CAS  PubMed  Google Scholar 

  8. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  CAS  PubMed  Google Scholar 

  9. Sluyter R, Shemon AN, Barden JA, Wiley JS (2004) Extracellular ATP increases cation fluxes in human erythrocytes by activation of the P2X7 receptor. J Biol Chem 279:44749–44755

    Article  CAS  PubMed  Google Scholar 

  10. Sluyter R, Shemon AN, Hughes WE, Stevenson RO, Georgiou JG, Eslick GD, Taylor RM, Wiley JS (2007) Canine erythrocytes express the P2X7 receptor: greatly increased function compared with human erythrocytes. Am J Physiol Regul Integr Comp Physiol 293:R2090–R2098

    CAS  PubMed  Google Scholar 

  11. Gu BJ, Zhang WY, Bendall LJ, Chessell IP, Buell GN, Wiley JS (2000) Expression of P2X(7) purinoceptors on human lymphocytes and monocytes: evidence for nonfunctional P2X(7) receptors. Am J Physiol Cell Physiol 279:C1189–C1197

    CAS  PubMed  Google Scholar 

  12. Sluyter R, Barden JA, Wiley JS (2001) Detection of P2X purinergic receptors on human B lymphocytes. Cell Tissue Res 304:231–236

    Article  CAS  PubMed  Google Scholar 

  13. Adinolfi E, Melchiorri L, Falzoni S, Chiozzi P, Morelli A, Tieghi A, Cuneo A, Castoldi G, Di Virgilio F, Baricordi OR (2002) P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood 99:706–708

    Article  CAS  PubMed  Google Scholar 

  14. Suh BC, Kim JS, Namgung U, Ha H, Kim KT (2001) P2X7 nucleotide receptor mediation of membrane pore formation and superoxide generation in human promyelocytes and neutrophils. J Immunol 166:6754–6763

    CAS  PubMed  Google Scholar 

  15. Bulanova E, Budagian V, Orinska Z, Hein M, Petersen F, Thon L, Adam D, Bulfone-Paus S (2005) Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells. J Immunol 174:3880–3890

    CAS  PubMed  Google Scholar 

  16. Idzko M, Panther E, Bremer HC, Sorichter S, Luttmann W, Virchow CJ Jr, Di Virgilio F, Herouy Y, Norgauer J, Ferrari D (2003) Stimulation of P2 purinergic receptors induces the release of eosinophil cationic protein and interleukin-8 from human eosinophils. Br J Pharmacol 138:1244–1250

    Article  CAS  PubMed  Google Scholar 

  17. Gudipaty L, Humphreys BD, Buell G, Dubyak GR (2001) Regulation of P2X(7) nucleotide receptor function in human monocytes by extracellular ions and receptor density. Am J Physiol Cell Physiol 280:C943–C953

    CAS  PubMed  Google Scholar 

  18. Zhang XJ, Zheng GG, Ma XT, Lin YM, Song YH, Wu KF (2005) Effects of various inducers on the expression of P2X7 receptor in human peripheral blood mononuclear cells. Shengli xuebao 57:193–198

    CAS  Google Scholar 

  19. Miras-Portugal MT, Diaz-Hernandez M, Giraldez L, Hervas C, Gomez-Villafuertes R, Sen RP, Gualix J, Pintor J (2003) P2X7 receptors in rat brain: presence in synaptic terminals and granule cells. Neurochem Res 28:1597–1605

    Article  CAS  PubMed  Google Scholar 

  20. Leon D, Hervas C, Miras-Portugal MT (2006) P2Y1 and P2X7 receptors induce calcium/calmodulin-dependent protein kinase II phosphorylation in cerebellar granule neurons. Eur J NeuroSci 23:2999–3013

    Article  PubMed  Google Scholar 

  21. Marin-Garcia P, Sanchez-Nogueiro J, Gomez-Villafuertes R, Leon D, Miras-Portugal MT (2008) Synaptic terminals from mice midbrain exhibit functional P2X7 receptor. Neuroscience 151:361–373

    Article  CAS  PubMed  Google Scholar 

  22. Zhang XF, Han P, Faltynek CR, Jarvis MF, Shieh CC (2005) Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia. Brain Res 1052:63–70

    Article  CAS  PubMed  Google Scholar 

  23. Bianco F, Ceruti S, Colombo A, Fumagalli M, Ferrari D, Pizzirani C, Matteoli M, Di Virgilio F, Abbracchio MP, Verderio C (2006) A role for P2X7 in microglial proliferation. J Neurochem 99:745–758

    Article  CAS  PubMed  Google Scholar 

  24. Bianco F, Fumagalli M, Pravettoni E, D'Ambrosi N, Volonte C, Matteoli M, Abbracchio MP, Verderio C (2005) Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res Brain Res Rev 48:144–156

    Article  CAS  PubMed  Google Scholar 

  25. Sugiyama T, Kawamura H, Yamanishi S, Kobayashi M, Katsumura K, Puro DG (2005) Regulation of P2X7-induced pore formation and cell death in pericyte-containing retinal microvessels. Am J Physiol Cell Physiol 288:C568–C576

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 280:42952–42959

    Article  CAS  PubMed  Google Scholar 

  27. Penolazzi L, Bianchini E, Lambertini E, Baraldi PG, Romagnoli R, Piva R, Gambari R (2005) N-arylpiperazine modified analogues of the P2X7 receptor KN-62 antagonist are potent inducers of apoptosis of human primary osteoclasts. J Biomed Sci 12:1013–1020

    Article  CAS  PubMed  Google Scholar 

  28. Ohlendorff SD, Tofteng CL, Jensen JE, Petersen S, Civitelli R, Fenger M, Abrahamsen B, Hermann AP, Eiken P, Jorgensen NR (2007) Single nucleotide polymorphisms in the P2X7 gene are associated to fracture risk and to effect of estrogen treatment. Pharmacogenet Genomics 17:555–567

    Article  CAS  PubMed  Google Scholar 

  29. Li Q, Luo X, Zeng W, Muallem S (2003) Cell-specific behavior of P2X7 receptors in mouse parotid acinar and duct cells. J Biol Chem 278:47554–47561

    Article  CAS  PubMed  Google Scholar 

  30. Hu HZ, Gao N, Lin Z, Gao C, Liu S, Ren J, Xia Y, Wood JD (2001) P2X(7) receptors in the enteric nervous system of guinea-pig small intestine. J Comp Neurol 440:299–310

    Article  CAS  PubMed  Google Scholar 

  31. Hillman KA, Burnstock G, Unwin RJ (2005) The P2X7 ATP receptor in the kidney: a matter of life or death? Nephron Exp Nephrol 101:e24–e30

    Article  CAS  PubMed  Google Scholar 

  32. Koshi R, Coutinho-Silva R, Cascabulho CM, Henrique-Pons A, Knight GE, Loesch A, Burnstock G (2005) Presence of the P2X(7) purinergic receptor on immune cells that invade the rat endometrium during oestrus. J Reprod Immunol 66:127–140

    Article  CAS  PubMed  Google Scholar 

  33. Emmett DS, Feranchak A, Kilic G, Puljak L, Miller B, Dolovcak S, McWilliams R, Doctor RB, Fitz JG (2008) Characterization of ionotrophic purinergic receptors in hepatocytes. Hepatology 47:698–705

    Article  CAS  PubMed  Google Scholar 

  34. Verhoef PA, Estacion M, Schilling W, Dubyak GR (2003) P2X7 receptor-dependent blebbing and the activation of Rho-effector kinases, caspases, and IL-1 beta release. J Immunol 170:5728–5738

    CAS  PubMed  Google Scholar 

  35. Franke H, Gunther A, Grosche J, Schmidt R, Rossner S, Reinhardt R, Faber-Zuschratter H, Schneider D, Illes P (2004) P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol 63:686–699

    CAS  PubMed  Google Scholar 

  36. Wirkner K, Kofalvi A, Fischer W, Gunther A, Franke H, Groger-Arndt H, Norenberg W, Madarasz E, Vizi ES, Schneider D, Sperlagh B, Illes P (2005) Supersensitivity of P2X receptors in cerebrocortical cell cultures after in vitro ischemia. J Neurochem 95:1421–1437

    Article  CAS  PubMed  Google Scholar 

  37. Le Feuvre R, Brough D, Rothwell N (2002) Extracellular ATP and P2X7 receptors in neurodegeneration. Eur J Pharmacol 447:261–269

    Article  PubMed  Google Scholar 

  38. Rampe D, Wang L, Ringheim GE (2004) P2X7 receptor modulation of beta-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J Neuroimmunol 147:56–61

    Article  CAS  PubMed  Google Scholar 

  39. Al Shukaili A, Al Kaabi J, Hassan B (2008) A comparative study of interleukin-1beta production and p2x7 expression after ATP stimulation by peripheral blood mononuclear cells isolated from rheumatoid arthritis patients and normal healthy controls. Inflammation 31:84–90

    Article  CAS  PubMed  Google Scholar 

  40. Nath SK, Quintero-Del-Rio AI, Kilpatrick J, Feo L, Ballesteros M, Harley JB (2004) Linkage at 12q24 with systemic lupus erythematosus (SLE) is established and confirmed in Hispanic and European American families. Am J Hum Genet 74:73–82

    Article  CAS  PubMed  Google Scholar 

  41. Elliott JI, McVey JH, Higgins CF (2005) The P2X7 receptor is a candidate product of murine and human lupus susceptibility loci: a hypothesis and comparison of murine allelic products. Arthritis Res Ther 7:R468–R475

    Article  CAS  PubMed  Google Scholar 

  42. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396

    Article  CAS  PubMed  Google Scholar 

  43. Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168:6436–6445

    CAS  PubMed  Google Scholar 

  44. Sharp AJ, Polak PE, Simonini V, Lin SX, Richardson JC, Bongarzone ER, Feinstein DL (2008) P2x7 deficiency suppresses development of experimental autoimmune encephalomyelitis. J Neuroinflammation 5:33

    Article  PubMed  Google Scholar 

  45. Alcaraz L, Baxter A, Bent J, Bowers K, Braddock M, Cladingboel D, Donald D, Fagura M, Furber M, Laurent C, Lawson M, Mortimore M, McCormick M, Roberts N, Robertson M (2003) Novel P2X7 receptor antagonists. Bioorg Med Chem Lett 13:4043–4046

    Article  CAS  PubMed  Google Scholar 

  46. Furber M, Alcaraz L, Bent JE, Beyerbach A, Bowers K, Braddock M, Caffrey MV, Cladingboel D, Collington J, Donald DK, Fagura M, Ince F, Kinchin EC, Laurent C, Lawson M, Luker TJ, Mortimore MM, Pimm AD, Riley RJ, Roberts N, Robertson M, Theaker J, Thorne PV, Weaver R, Webborn P, Willis P (2007) Discovery of potent and selective adamantane-based small-molecule P2X(7) receptor antagonists/interleukin-1beta inhibitors. J Med Chem 50:5882–5885

    Article  CAS  PubMed  Google Scholar 

  47. Stokes L, Jiang LH, Alcaraz L, Bent J, Bowers K, Fagura M, Furber M, Mortimore M, Lawson M, Theaker J, Laurent C, Braddock M, Surprenant A (2006) Characterization of a selective and potent antagonist of human P2X(7) receptors, AZ11645373. Br J Pharmacol 149:880–887

    Article  CAS  PubMed  Google Scholar 

  48. Baxter A, Bent J, Bowers K, Braddock M, Brough S, Fagura M, Lawson M, McInally T, Mortimore M, Robertson M, Weaver R, Webborn P (2003) Hit-to-lead studies: the discovery of potent adamantane amide P2X7 receptor antagonists. Bioorg Med Chem Lett 13:4047–4050

    Article  CAS  PubMed  Google Scholar 

  49. Rothwell N (2003) Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav Immun 17:152–157

    Article  PubMed  Google Scholar 

  50. Baraldi PG, Di Virgilio F, Romagnoli R (2004) Agonists and antagonists acting at P2X7 receptor. Curr Top Med Chem 4:1707–1717

    Article  CAS  PubMed  Google Scholar 

  51. Baraldi PG, Romagnoli R, Tabrizi MA, Falzoni S, Di Virgilio F (2000) Synthesis of conformationally constrained analogues of KN62, a potent antagonist of the P2X7-receptor. Bioorg Med Chem Lett 10:681–684

    Article  CAS  PubMed  Google Scholar 

  52. Fonfria E, Clay WC, Levy DS, Goodwin JA, Roman S, Smith GD, Condreay JP, Michel AD (2008) Cloning and pharmacological characterization of the guinea pig P2X7 receptor orthologue. Br J Pharmacol 153:544–556

    Article  CAS  PubMed  Google Scholar 

  53. Buell GN, Talabot F, Gos A, Lorenz J, Lai E, Morris MA, Antonarakis SE (1998) Gene structure and chromosomal localization of the human P2X7 receptor. Recept Channels 5:347–354

    CAS  PubMed  Google Scholar 

  54. Gu BJ, Zhang W, Worthington RA, Sluyter R, Dao-Ung P, Petrou S, Barden JA, Wiley JS (2001) A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J Biol Chem 276:11135–11142

    Article  CAS  PubMed  Google Scholar 

  55. Wiley JS, Dao-Ung LP, Li C, Shemon AN, Gu BJ, Smart ML, Fuller SJ, Barden JA, Petrou S, Sluyter R (2003) An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor. J Biol Chem 278:17108–17113

    Article  CAS  PubMed  Google Scholar 

  56. Shemon AN, Sluyter R, Fernando SL, Clarke AL, Dao-Ung LP, Skarratt KK, Saunders BM, Tan KS, Gu BJ, Fuller SJ, Britton WJ, Petrou S, Wiley JS (2006) A Thr357 to Ser polymorphism in homozygous and compound heterozygous subjects causes absent or reduced P2X7 function and impairs ATP-induced mycobacterial killing by macrophages. J Biol Chem 281:2079–2086

    Article  CAS  PubMed  Google Scholar 

  57. Gu BJ, Sluyter R, Skarratt KK, Shemon AN, Dao-Ung LP, Fuller SJ, Barden JA, Clarke AL, Petrou S, Wiley JS (2004) An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor. J Biol Chem 279:31287–31295

    Article  CAS  PubMed  Google Scholar 

  58. Denlinger LC, Coursin DB, Schell K, Angelini G, Green DN, Guadarrama AG, Halsey J, Prabhu U, Hogan KJ, Bertics PJ (2006) Human P2X7 pore function predicts allele linkage disequilibrium. Clin Chem 52:995–1004

    Article  CAS  PubMed  Google Scholar 

  59. Cabrini G, Falzoni S, Forchap SL, Pellegatti P, Balboni A, Agostini P, Cuneo A, Castoldi G, Baricordi OR, Di Virgilio F (2005) A His-155 to Tyr polymorphism confers gain-of-function to the human P2X7 receptor of human leukemic lymphocytes. J Immunol 175:82–89

    CAS  PubMed  Google Scholar 

  60. Fernando SL, Saunders BM, Sluyter R, Skarratt KK, Goldberg H, Marks GB, Wiley JS, Britton WJ (2007) A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am J Respir Crit Care Med 175:360–366

    Article  CAS  PubMed  Google Scholar 

  61. Saunders BM, Fernando SL, Sluyter R, Britton WJ, Wiley JS (2003) A loss-of-function polymorphism in the human P2X7 receptor abolishes ATP-mediated killing of mycobacteria. J Immunol 171:5442–5446

    CAS  PubMed  Google Scholar 

  62. Wiley JS, Dao-Ung LP, Gu BJ, Sluyter R, Shemon AN, Li C, Taper J, Gallo J, Manoharan A (2002) A loss-of-function polymorphic mutation in the cytolytic P2X7 receptor gene and chronic lymphocytic leukaemia: a molecular study. Lancet 359:1114–1119

    Article  CAS  PubMed  Google Scholar 

  63. Thunberg U, Tobin G, Johnson A, Soderberg O, Padyukov L, Hultdin M, Klareskog L, Enblad G, Sundstrom C, Roos G, Rosenquist R (2002) Polymorphism in the P2X7 receptor gene and survival in chronic lymphocytic leukaemia. Lancet 360:1935–1939

    Article  CAS  PubMed  Google Scholar 

  64. Dao-Ung LP, Fuller SJ, Sluyter R, Skarratt KK, Thunberg U, Tobin G, Byth K, Ban M, Rosenquist R, Stewart GJ, Wiley JS (2004) Association of the 1513C polymorphism in the P2X7 gene with familial forms of chronic lymphocytic leukaemia. Br J Haematol 125:815–817

    Article  PubMed  Google Scholar 

  65. Barden N, Harvey M, Gagne B, Shink E, Tremblay M, Raymond C, Labbe M, Villeneuve A, Rochette D, Bordeleau L, Stadler H, Holsboer F, Muller-Myhsok B (2006) Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 141:374–382

    Google Scholar 

  66. Hejjas K, Szekely A, Domotor E, Halmai Z, Balogh G, Schilling B, Sarosi A, Faludi G, Sasvari-Szekely M, Nemoda Z (2009) Association between depression and the Gln460Arg polymorphism of P2RX7 Gene: A dimensional approach. Am J Med Genet B Neuropsychiatr Genet 150B(2):295–299

    Article  CAS  PubMed  Google Scholar 

  67. Elliott JI, Higgins CF (2004) Major histocompatibility complex class I shedding and programmed cell death stimulated through the proinflammatory P2X7 receptor: a candidate susceptibility gene for NOD diabetes. Diabetes 53:2012–2017

    Article  CAS  PubMed  Google Scholar 

  68. Lee KH, Park SS, Kim I, Kim JH, Ra EK, Yoon SS, Hong YC, Park S, Kim BK (2007) P2X7 receptor polymorphism and clinical outcomes in HLA-matched sibling allogeneic hematopoietic stem cell transplantation. Haematologica 92:651–657

    Article  CAS  PubMed  Google Scholar 

  69. Zhang B, Sun C, Jin S, Cascio M, Montelaro RC (2008) Mapping of equine lentivirus receptor 1 residues critical for equine infectious anemia virus envelope binding. J Virol 82:1204–1213

    Article  CAS  PubMed  Google Scholar 

  70. Sun C, Zhang B, Jin J, Montelaro RC (2008) Binding of equine infectious anemia virus to the equine lentivirus receptor-1 is mediated by complex discontinuous sequences in the viral envelope gp90 protein. J Gen Virol 89:2011–2019

    Article  CAS  PubMed  Google Scholar 

  71. Cheewatrakoolpong B, Gilchrest H, Anthes JC, Greenfeder S (2005) Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem Biophys Res Commun 332:17–27

    Article  CAS  PubMed  Google Scholar 

  72. Rassendren F, Buell GN, Virginio C, Collo G, North RA, Surprenant A (1997) The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J Biol Chem 272:5482–5486

    Article  CAS  PubMed  Google Scholar 

  73. Jiang LH, Rassendren F, Surprenant A, North RA (2000) Identification of amino acid residues contributing to the ATP-binding site of a purinergic P2X receptor. J Biol Chem 275:34190–34196

    Article  CAS  PubMed  Google Scholar 

  74. Ennion S, Hagan S, Evans RJ (2000) The role of positively charged amino acids in ATP recognition by human P2X1 receptors. J Biol Chem 275:35656

    Article  CAS  PubMed  Google Scholar 

  75. Worthington RA, Smart ML, Gu BJ, Williams DA, Petrou S, Wiley JS, Barden JA (2002) Point mutations confer loss of ATP-induced human P2X(7) receptor function. FEBS Lett 512:43–46

    Article  CAS  PubMed  Google Scholar 

  76. Nakazawa K, Ohno Y (1999) Neighboring glycine residues are essential for P2X2 receptor/channel function. Eur J Pharmacol 370:R5–R6

    Article  CAS  PubMed  Google Scholar 

  77. Digby HR, Roberts JA, Sutcliffe MJ, Evans RJ (2005) Contribution of conserved glycine residues to ATP action at human P2X1 receptors: mutagenesis indicates that the glycine at position 250 is important for channel function. J Neurochem 95:1746–1754

    Article  CAS  PubMed  Google Scholar 

  78. Roberts JA, Digby HR, Kara M, El Ajouz S, Sutcliffe MJ, Evans RJ (2008) Cysteine substitution mutagenesis and the effects of methanethiosulfonate reagents at P2X2 and P2X4 receptors support a core common mode of ATP action at P2X receptors. J Biol Chem 283:20126–20136

    Article  CAS  PubMed  Google Scholar 

  79. Young MT, Pelegrin P, Surprenant A (2007) Amino acid residues in the P2X7 receptor that mediate differential sensitivity to ATP and BzATP. Mol Pharmacol 71:92–100

    Article  CAS  PubMed  Google Scholar 

  80. Hu Y, Fisette PL, Denlinger LC, Guadarrama AG, Sommer JA, Proctor RA, Bertics PJ (1998) Purinergic receptor modulation of lipopolysaccharide signaling and inducible nitric-oxide synthase expression in RAW 264.7 macrophages. J Biol Chem 273:27170–27175

    Article  CAS  PubMed  Google Scholar 

  81. Britton WJ, Fernando SL, Saunders BM, Sluyter R, Wiley JS (2007) The genetic control of susceptibility to Mycobacterium tuberculosis. Novartis Found Symp 281:79–89

    Article  CAS  PubMed  Google Scholar 

  82. Fernando SL, Saunders BM, Sluyter R, Skarratt KK, Wiley JS, Britton WJ (2005) Gene dosage determines the negative effects of polymorphic alleles of the P2X7 receptor on adenosine triphosphate-mediated killing of mycobacteria by human macrophages. J Infect Dis 192:149–155

    Article  CAS  PubMed  Google Scholar 

  83. Boldt W, Klapperstuck M, Buttner C, Sadtler S, Schmalzing G, Markwardt F (2003) Glu496Ala polymorphism of human P2X7 receptor does not affect its electrophysiological phenotype. Am J Physiol Cell Physiol 284:C749–C756

    CAS  PubMed  Google Scholar 

  84. Li M, Chang TH, Silberberg SD, Swartz KJ (2008) Gating the pore of P2X receptor channels. Nat Neurosci 11:883–887

    Article  CAS  PubMed  Google Scholar 

  85. Rassendren F, Buell G, Newbolt A, North RA, Surprenant A (1997) Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J 16:3446–3454

    Article  CAS  PubMed  Google Scholar 

  86. Migita K, Haines WR, Voigt MM, Egan TM (2001) Polar residues of the second transmembrane domain influence cation permeability of the ATP-gated P2X(2) receptor. J Biol Chem 276:30934–30941

    Article  CAS  PubMed  Google Scholar 

  87. Denlinger LC, Sommer JA, Parker K, Gudipaty L, Fisette PL, Watters JW, Proctor RA, Dubyak GR, Bertics PJ (2003) Mutation of a dibasic amino acid motif within the C terminus of the P2X7 nucleotide receptor results in trafficking defects and impaired function. J Immunol 171:1304–1311

    CAS  PubMed  Google Scholar 

  88. Duckwitz W, Hausmann R, Aschrafi A, Schmalzing G (2006) P2X5 subunit assembly requires scaffolding by the second transmembrane domain and a conserved aspartate. J Biol Chem 281:39561–39572

    Article  CAS  PubMed  Google Scholar 

  89. Georgiou JG, Skarratt KK, Fuller SJ, Martin CJ, Christopherson RI, Wiley JS, Sluyter R (2005) Human epidermal and monocyte-derived Langerhans cells express functional P2X receptors. J Invest Dermatol 125:482–490

    Article  CAS  PubMed  Google Scholar 

  90. Feng YH, Li X, Zeng R, Gorodeski GI (2006) Endogenously expressed truncated P2X7 receptor lacking the C-terminus is preferentially upregulated in epithelial cancer cells and fails to mediate ligand-induced pore formation and apoptosis. Nucleosides Nucleotides Nucleic Acids 25:1271–1276

    Article  CAS  PubMed  Google Scholar 

  91. Feng YH, Li X, Wang L, Zhou L, Gorodeski GI (2006) A truncated P2X7 receptor variant (P2X7-j) endogenously expressed in cervical cancer cells antagonizes the full-length P2X7 receptor through hetero-oligomerization. J Biol Chem 281:17228–17237

    Article  CAS  PubMed  Google Scholar 

  92. Hardy LA, Harvey IJ, Chambers P, Gillespie JI (2000) A putative alternatively spliced variant of the P2X(1) purinoreceptor in human bladder. Exp Physiol 85:461–463

    Article  CAS  PubMed  Google Scholar 

  93. Lynch KJ, Touma E, Niforatos W, Kage KL, Burgard EC, van Biesen T, Kowaluk EA, Jarvis MF (1999) Molecular and functional characterization of human P2X(2) receptors. Mol Pharmacol 56:1171–1181

    CAS  PubMed  Google Scholar 

  94. Brandle U, Spielmanns P, Osteroth R, Sim J, Surprenant A, Buell G, Ruppersberg JP, Plinkert PK, Zenner HP, Glowatzki E (1997) Desensitization of the P2X(2) receptor controlled by alternative splicing. FEBS Lett 404:294–298

    Article  CAS  PubMed  Google Scholar 

  95. Dhulipala PD, Wang YX, Kotlikoff MI (1998) The human P2X4 receptor gene is alternatively spliced. Gene 207:259–266

    Article  CAS  PubMed  Google Scholar 

  96. Townsend-Nicholson A, King BF, Wildman SS, Burnstock G (1999) Molecular cloning, functional characterization and possible cooperativity between the murine P2X4 and P2X4a receptors. Brain Res Mol Brain Res 64:246–254

    Article  CAS  PubMed  Google Scholar 

  97. Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD (2007) Evidence for functional P2X4/P2X7 heteromeric receptors. Mol Pharmacol 72:1447–1456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants A157168 and CA73743.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell D. Salter.

Additional information

Footnotes

The sequence of the new gain-of-function P2X7 variant (Variant A) has been submitted to NCBI GenBank database (GeneBank accession number, GQ180122).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Chu, J., Singh, S. et al. Identification and characterization of a novel variant of the human P2X7 receptor resulting in gain of function. Purinergic Signalling 6, 31–45 (2010). https://doi.org/10.1007/s11302-009-9168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-009-9168-9

Keywords

Navigation