Skip to main content

Advertisement

Log in

Imaging Correlates of Differential Expression of Indoleamine 2,3-Dioxygenase in Human Brain Tumors

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Background

Tryptophan catabolism via the kynurenine pathway, mediated by indoleamine 2,3-dioxygenase (IDO), is a mechanism involved in tumor immunoresistance. Positron emission tomography (PET) with α-[11C]methyl-L-tryptophan (AMT) can quantify transport and metabolism of tryptophan in infiltrating gliomas and glioneuronal tumors. In the present study, we investigated whether increased tryptophan metabolism in brain tumors measured by PET is related to expression of IDO in resected brain tumor specimens.

Methods

IDO expression was assessed by immunohistochemistry in tumor specimens from 15 patients (median age, 34 years) with primary brain tumors who underwent AMT PET scanning before tumor resection. Patterns of IDO expression were compared between low- and high-grade tumors and also to AMT transport and metabolism measured on PET.

Results

IDO immunoreactivity was seen in tumor cells in six of seven low-grade tumors but only in one of eight high-grade tumors (p = 0.01); three of these latter tumors showed endothelial staining only. Low-grade neoplasms showed lower transport rate (p < 0.01) but higher metabolic rate (p = 0.003) for AMT as compared to high-grade tumors. AMT metabolic rates were lower in tumor samples with no or minimal IDO expression as compared to those with widespread IDO staining (p = 0.017).

Conclusion

Low-grade tumors show widespread IDO expression, while IDO expression in high-grade brain tumors can be absent or largely confined to endothelial cells. AMT PET can be useful to identify brain tumors with different profiles of IDO expression, thus providing a useful imaging marker for emerging treatments targeting tumor IDO activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aune TM, Pogue SL (1989) Inhibition of tumor cell growth by interferon-gamma is mediated by two distinct mechanisms dependent upon oxygen tension: induction of tryptophan degradation and depletion of intracellular nicotinamide adenine d inucleotide. J Clin Invest 84:863–875

    Article  CAS  PubMed  Google Scholar 

  2. Beutelspacher SC, Tan PH, McClure MO, Larkin DF, Lechler RI, George AJ (2006) Expression of indoleamine 2,3-dioxygenase (IDO) by endothelial cells: implications for the control of alloresponses. Am J Transplant 6:1320–1330

    Article  CAS  PubMed  Google Scholar 

  3. Burger PC, Scheithauer BW (eds) (1994) Atlas of tumor pathology: tumors of the central nervous system, 3rd series. Armed Forces Institute of Pathology, Bethesda, MD

  4. Burger PC, Scheithauer BW, Vogel FS (eds) (2002) Surgical pathology of the nervous system and its coverings, PC 4th edn. New York: Churchill-Livingstone

  5. Burke F, Knowles RG, East N, Balkwill FR (1995) The role of indoleamine 2,3-dioxygenase in the anti-tumour activity of human interferon-gamma in vivo. Int J Cancer 60:115–122

    Article  CAS  PubMed  Google Scholar 

  6. Chugani DC, Muzik O, Chakraborty P, Mangner T, Chugani HT (1998) Human brain serotonin synthesis capacity measured in vivo with alpha-[C-11]methyl-L-tryptophan. Synapse 28:33–43

    Article  CAS  PubMed  Google Scholar 

  7. Chugani DC, Muzik O (2000) Alpha[C-11]methyl-L-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J Cereb Blood Flow Metab 20:2–9

    Article  CAS  PubMed  Google Scholar 

  8. Diksic M, Nagahiro S, Sourkes TL, Yamamoto YL (1990) A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model. J Cereb Blood Flow Metab 10:1–12

    CAS  PubMed  Google Scholar 

  9. Fenstermaker RA, Ciesielski MJ (2004) Immunotherapeutic strategies for malignant glioma. Cancer Control 11:181–191

    PubMed  Google Scholar 

  10. Friberg M, Jennings R, Alsarraj M, Dessureault S, Cantor A, Extermann M, Mellor AL, Munn DH, Antonia SJ (2002) Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer 101:151–155

    Article  CAS  PubMed  Google Scholar 

  11. Gjedde A (1981) High- and low-affinity transport of D-glucose from blood to brain. J Neurochem 36:1463–1471

    Article  CAS  PubMed  Google Scholar 

  12. Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15–23

    Article  PubMed  Google Scholar 

  13. Jensen RL, Caamano E, Jensen EM, Couldwell WT (2006) Development of contrast enhancement after long-term observation of a dysembryoplastic neuroepithelial tumor. J Neurooncol 78:59–62

    Article  PubMed  Google Scholar 

  14. Jia L, Schweikart K, Tomaszewski J, Page JG, Noker PE, Buhrow SA, Reid JM, Ames MM, Munn DH (2008) Toxicology and pharmacokinetics of 1-methyl-d-tryptophan: absence of toxicity due to saturating absorption. Food Chem Toxicol 46:203–211

    Article  CAS  PubMed  Google Scholar 

  15. Juhasz C, Chugani DC, Muzik O, Wu D, Sloan AE, Barger G, Watson C, Shah AK, Sood S, Ergun EL, Mangner TJ, Chakraborty PK, Kupsky WJ, Chugani HT (2006) In vivo uptake and metabolism of alpha-[11C]methyl-L-tryptophan in human brain tumors. J Cereb Blood Flow Metab 26:345–357

    Article  CAS  PubMed  Google Scholar 

  16. Kai S, Goto S, Tahara K, Sasaki A, Kawano K, Kitano S (2003) Inhibition of indoleamine 2,3-dioxygenase suppresses NK cell activity and accelerates tumor growth. J Exp Ther Oncol 3:336–345

    Article  CAS  PubMed  Google Scholar 

  17. Kai S, Goto S, Tahara K, Sasaki A, Tone S, Kitano S (2004) Indoleamine 2,3-dioxygenase is necessary for cytolytic activity of natural killer cells. Scand J Immunol 59:177–182

    Article  CAS  PubMed  Google Scholar 

  18. King NJ, Thomas SR (2007) Molecules in focus: indoleamine 2,3-dioxygenase. Int J Biochem Cell Biol 39:2167–2172

    Article  Google Scholar 

  19. Kleihues P, Cavenee WK (eds) (2000) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer (IARC) Press, Lyon

  20. Kwidzinski E, Bunse J, Kovac AD, Ullrich O, Zipp F, Nitsch R, Bechmann I (2003) IDO (indolamine 2,3-dioxygenase) expression and function in the CNS. Adv Exp Med Biol 527:113–118

    CAS  PubMed  Google Scholar 

  21. Kwidzinski E, Bechmann I (2007) IDO expression in the brain: a double-edged sword. J Mol Med 85:1351–1359

    Article  PubMed  Google Scholar 

  22. Löb S, Königsrainer A (2008) Is IDO a key enzyme bridging the gap between tumor escape and tolerance induction? Langenbecks Arch Surg 393:995–1003

    Article  PubMed  Google Scholar 

  23. Löb S, Königsrainer A, Zieker D, Brücher BL, Rammensee HG, Opelz G, Terness P (2009) IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother 58:153–157

    Article  PubMed  Google Scholar 

  24. Madras BK, Sourkes TL (1965) Metabolism of alpha-methyltryptophan. Biochem Pharmacol 14:1499–1506

    Article  CAS  PubMed  Google Scholar 

  25. Mellor AL, Munn DH (1999) Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today 20:469–473

    Article  CAS  PubMed  Google Scholar 

  26. Merchant RE, McVicar DW, Merchant LH, Young HF (1992) Treatment of recurrent malignant glioma by repeated intracerebral injections of human recombinant interleukin-2 alone or in combination with systemic interferon-alpha. Results of a phase I clinical trial. J Neurooncol 12:75–83

    Article  CAS  PubMed  Google Scholar 

  27. Munn DH, Mellor AL (2004) IDO and tolerance to tumors. Trends Mol Med 10:15–8

    Article  CAS  PubMed  Google Scholar 

  28. Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117:1147–54

    Article  CAS  PubMed  Google Scholar 

  29. Muzik O, Behrendt DB, Mangner TJ, Chugani HT (1994) Design of a pediatric protocol for quantitative brain FDG studies with PET not requiring invasive blood sampling. J Nucl Med 35:104

    Google Scholar 

  30. Muzik O, Chugani DC, Chakraborty P, Mangner T, Chugani HT (1997) Analysis of [C-11]alpha-methyl-tryptophan kinetics for the estimation of serotonin synthesis rate in vivo. J Cereb Blood Flow Metab 17:659–669

    Article  CAS  PubMed  Google Scholar 

  31. Ozaki Y, Edelstein MP, Duch DS (1988) Induction of indoleamine 2,3-dioxygenase: a mechanism of the antitumor activity of interferon gamma. Proc Natl Acad Sci USA 85:1242–1246

    Article  CAS  PubMed  Google Scholar 

  32. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    CAS  PubMed  Google Scholar 

  33. Quinones-Hinojosa A, Sanai N, Smith JS, McDermott MW (2005) Techniques to assess the proliferative potential of brain tumors. J Neurooncol 74:19–30

    Article  PubMed  Google Scholar 

  34. Riesenberg R, Weiler C, Spring O, Eder M, Buchner A, Popp T, Castro M, Kammerer R, Takikawa O, Hatz RA, Stief CG, Hofstetter A, Zimmermann W (2007) Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin Cancer Res 13:6993–7002

    Article  CAS  PubMed  Google Scholar 

  35. Schröcksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 364:82–90

    Article  PubMed  Google Scholar 

  36. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    Article  CAS  PubMed  Google Scholar 

  37. Stojic J, Hagemann C, Haas S, Herbold C, Kühnel S, Gerngras S, Roggendorf W, Roosen K, Vince GH (2008) Expression of matrix metalloproteinases MMP-1, MMP-11 and MMP-19 is correlated with the WHO-grading of human malignant gliomas. Neurosci Res 60:40–49

    Article  CAS  PubMed  Google Scholar 

  38. Suhonen-Polvi H, Ruotsalainen U, Kinnala A, Bergman J, Haaparanta M, Teras M, Makela P, Solin O, Wegelius U (1995) FDG-PET in early infancy: simplified quantification methods to measure cerebral glucose utilization. J Nucl Med 36:1249–1254

    CAS  PubMed  Google Scholar 

  39. Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5:2516–2522

    CAS  PubMed  Google Scholar 

  40. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van Den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    Article  CAS  PubMed  Google Scholar 

  41. Vezzani A, Gramsbergen JB, Versari P, Stasi MA, Procaccio F, Schwarcz R (1990) Kynurenic acid synthesis by human glioma. J Neurol Sci 99:51–57

    Article  CAS  PubMed  Google Scholar 

  42. Wolff JE, Wagner S, Reinert C, Gnekow A, Kortmann RD, Kühl J, Van Gool SW (2006) Maintenance treatment with interferon-gamma and low-dose cyclophosphamide for pediatric high-grade glioma. J Neurooncol 79:315–321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Galina Rabkin, CNMT, Angela Wigeluk, CNMT, and Mei-li Lee, MS, for their technical assistance in performing the PET studies. They also thank Ms. Barbara Pruetz from the Department of Pathology for her expert assistance in the immunohistochemistry studies. The study was supported by a grant from the National Cancer Institute (CA-12341, to C. Juhasz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Juhász.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batista, C.E.A., Juhász, C., Muzik, O. et al. Imaging Correlates of Differential Expression of Indoleamine 2,3-Dioxygenase in Human Brain Tumors. Mol Imaging Biol 11, 460–466 (2009). https://doi.org/10.1007/s11307-009-0225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0225-0

Key words

Navigation