Skip to main content
Log in

Prognostic Role of Programmed Death Ligand-1 Expression in Breast Cancer: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

Cancer therapies that target the PD-1/PD-L1 pathway are in ongoing phase I/II clinical trials for several tumor types. However, the prognostic value of PD-L1 expression in breast cancer is unclear.

Objective

We assessed the prognostic role of PD-L1 expression in breast cancer.

Methods

We searched Medline/PubMed for eligible studies of the association between PD-L1 expression and patient survival in breast cancer published before 7 December 2015. The effect size was the hazard ratio (HR) with 95 % confidence interval (CI) for overall survival (OS), recurrence-free survival (RFS) and metastasis-free survival (MFS). Odds ratios (OR) with 95 % CIs were also extracted to evaluate associations between PD-L1 expression and patient clinicopathological features.

Results

We included five studies with 7,802 total patients in this meta-analysis. The pooled OR associated high PD-L1 expression with predictors of poor-prognosis: high tumor grade, negative ER status, negative PR status, positive HER2 status and lymphovascular invasion. High PD-L1 protein expression was associated with shorter OS (HR = 3.22, 95 % CI: 1.86–5.59; P < 0.0001), shorter RFS (HR = 1.38, 95 % CI: 1.03–1.86; P = 0.03) and shorter MFS (HR = 3.33, 95 % CI: 2.30–4.82; P < 0.00001); whereas high PD-L1 mRNA expression was associated with longer OS (HR = 0.86, 95 % CI: 0.75–1.00; P = 0.05) and longer RFS (HR = 0.57, 95 % CI: 0.36–0.91; P = 0.02).

Limitations

The findings of these studies were significantly heterogeneous; the results should be interpreted cautiously.

Conclusion

In breast cancer, high PD-L1 protein expression appears to be a negative prognostic factor, whereas high PD-L1 mRNA expression appears to be a favorable prognostic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pennock GK, Chow LQ. The evolving role of immune checkpoint inhibitors in cancer treatment. Oncologist. 2015;20:812–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sakaguchi S, Wing K, Onishi Y, et al. Regulatory T cells: how do they suppress immune responses? Int Immunol. 2009;21:1105–11.

    Article  CAS  PubMed  Google Scholar 

  3. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Flies DB, Sandler BJ, Sznol M, et al. Blockade of the B7-H1/PD-1 pathway for cancer immunotherapy. Yale J Biol Med. 2011;84:409–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Whiteside TL. The role of death receptor ligands in shaping tumor microenvironment. Immunol Investig. 2007;36:25–46.

    Article  CAS  Google Scholar 

  6. Sharabi AB, Lim M, Deweese TL, et al. Radiation and checkpoint blockade immunotherapy: radiosensitization and potential mechanisms of synergy. Lancet Oncol. 2015;16(13):e498–509.

    Article  PubMed  Google Scholar 

  7. La-Beck NM, Jean GW, Huynh C, et al. Immune checkpoint inhibitors: new insights and current place in cancer therapy. Pharmacotherapy. 2015;35:963–76.

    Article  CAS  PubMed  Google Scholar 

  8. Ghasemzadeh A, Bivalacqua TJ, Hahn NM, et al. New strategies in bladder cancer: a second coming for immunotherapy. Clin Cancer Res. 2016;22:793–801.

    Article  CAS  PubMed  Google Scholar 

  9. Chen J, Jiang CC, Jin L, et al. Regulation of PD-L1: a novel role of pro-survival signaling in cancer. Ann Oncol. 2016;27:409–16.

    Article  CAS  PubMed  Google Scholar 

  10. Ali OA, Lewin SA, Dranoff G, et al. Vaccines combined with immune checkpoint antibodies promote cytotoxic T cell activity and tumor eradication. Cancer Immunol Res. 2016;4:95–100.

    Article  CAS  PubMed  Google Scholar 

  11. Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2015;515:563–7.

    Article  Google Scholar 

  12. Reiss KA, Forde PM, Brahmer JR. Harnessing the power of the immune system via blockade of PD-1 and PD-L1: a promising new anticancer strategy. Immunotherapy. 2014;6:459–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gatalica Z, Snyder C, Maney T, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomarkers Prev. 2014;23:2965–70.

    Article  CAS  PubMed  Google Scholar 

  14. Zhong A, Xing Y, Pan X, et al. Prognostic value of programmed cell death-ligand 1 expression in patients with non-small-cell lung cancer: evidence from an updated meta-analysis. Onco Targets Ther. 2015;8:3595–601.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Prall F, Huhns M. PD-L1 expression in tumor buds of colorectal carcinoma. Histopathology. 2016;69:158–60.

  16. Liu J, Liu Y, Wang W, et al. Expression of immune checkpoint molecules in endometrial carcinoma. Exp Ther Med. 2015;10:1947–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Berretta M, Stanzione B, Di Francia R, et al. The expression of PD-L1 APE1 and P53 in hepatocellular carcinoma and its relationship to clinical pathology. Eur Rev Med Pharmacol Sci. 2015;19:4207–9.

    CAS  PubMed  Google Scholar 

  18. Weinstock M, Mcdermott D. Targeting PD-1/PD-L1 in the treatment of metastatic renal cell carcinoma. Ther Adv Urol. 2015;7:365–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thoma C. Prostate cancer: PD-L1 expression is common and indicates poor prognosis. Nat Rev Urol. 2016;13:5.

    Article  CAS  PubMed  Google Scholar 

  20. Marquez-Rodas I, Cerezuela P, Soria A, et al. Immune checkpoint inhibitors: therapeutic advances in melanoma. Ann Transl Med. 2015;3:267.

    PubMed  PubMed Central  Google Scholar 

  21. Qin T, Zeng YD, Qin G, et al. High PD-L1 expression was associated with poor prognosis in 870 Chinese patients with breast cancer. Oncotarget. 2015;6:33972–81.

    PubMed  PubMed Central  Google Scholar 

  22. Muenst S, Schaerli AR, Gao F, et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat. 2014;146:15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baptista MZ, Sarian LO, Derchain SF, et al. Prognostic significance of PD-L1 and PD-L2 in breast cancer. Hum Pathol. 2016;47:78–84.

    Article  CAS  PubMed  Google Scholar 

  24. Schalper KA, Velcheti V, Carvajal D, et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res. 2014;20:2773–82.

    Article  CAS  PubMed  Google Scholar 

  25. Sabatier R, Finetti P, Mamessier E, et al. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget. 2015;6:5449–64.

    Article  PubMed  Google Scholar 

  26. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–69. W64.

    Article  PubMed  Google Scholar 

  27. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151:W65–94.

    Article  PubMed  Google Scholar 

  28. Vandenbroucke JP, von Elm E, Altman DG, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Int J Surg. 2014;12:1500–24.

    Article  PubMed  Google Scholar 

  29. Zeng LN, Zhang LL, Shi J, et al. The primary microbial pathogens associated with premature rupture of the membranes in China: a systematic review. Taiwan J Obstet Gynecol. 2014;53:443–51.

    Article  PubMed  Google Scholar 

  30. Malhamé I, Cormier M, Sugarman J, Schwartzman K. Latent tuberculosis in pregnancy: a systematic review. PLoS One. 2016;11, e0154825.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.

    Article  CAS  PubMed  Google Scholar 

  33. Mahoney KM, Freeman GJ, Mcdermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther. 2015;37:764–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 Study. J Clin Oncol. 2016.

  35. Dirix LY, Takacs I, Nikolinakos P, et al. Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase Ib JAVELIN solid tumor trial [abstract]. In: Proceedings of the Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium; 2015 Dec 6–10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(4 Suppl):Abstract nr S1-04.

  36. Emens LA, Braiteh FS, Cassier P, et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triplenegative breast cancer (TNBC) [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18–22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2859.

  37. Rizvi N, Shepherd F, Antonia S, et al. First-line monotherapy with nivolumab (anti-PD-1; BMS-936558, ONO-4538) in advanced non-small cell lung cancer (NSCLC): safety, efficacy and correlation of outcomes with PD-L1 status. J Radiat Oncol Biol Phys. 2014;90:S31.

    Article  Google Scholar 

  38. Luis P, Horn L, Borghaei H, et al. Phase III, randomized trial (CheckMate 057) of nivolumab versus docetaxel in advanced non-squamous (non-SQ) cell non-small cell lung cancer (NSCLC). J Clin Oncol. 2015; 33(suppl), abstract LBA109.

  39. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rizvi NA, Mazieres J, Planchard D, et al. Activity and safety of nivolumab, an antiPD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16:257–65.

    Article  CAS  PubMed  Google Scholar 

  41. Ali HR, Glont SE, Blows FM, et al. PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes. Ann Oncol. 2015;26:1488–93.

    Article  CAS  PubMed  Google Scholar 

  42. Ghebeh H, Mohammed S, Al-Omair A, et al. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia. 2006;8:190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lastwika KJ, Wrd W, Li QK, et al. Control of PD-L1 expression by oncogenic activation of the AKT/mTOR pathway in non-small cell lung cancer. Cancer Res. 2016;76:227–38.

    Article  CAS  PubMed  Google Scholar 

  44. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;17:3268–77.

    Article  Google Scholar 

  45. Akbay EA, Koyama S, Carretero J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3:1355–63.

    Article  CAS  PubMed  Google Scholar 

  46. Crane CA, Panner A, Murray JC, et al. PI(3) kinase is associated with a mechanism of immunoresistance in breast and prostate cancer. Oncogene. 2009;28:306–12.

    Article  CAS  PubMed  Google Scholar 

  47. Bordeaux JM, Cheng H, Welsh AW, et al. Quantitative in situ measurement of estrogen receptor mRNA predicts response to tamoxifen. PLoS One. 2012;7, e36559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Velcheti V, Schalper KA, Carvajal DE, et al. Programmed death ligand-1 expression in non-small cell lung cancer. Lab Investig. 2014;9:107–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinming Yu.

Ethics declarations

Funding

None.

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

(DOC 74 kb)

Supplemental Table 2

(DOC 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, M., Lian, Z. et al. Prognostic Role of Programmed Death Ligand-1 Expression in Breast Cancer: A Systematic Review and Meta-Analysis. Targ Oncol 11, 753–761 (2016). https://doi.org/10.1007/s11523-016-0451-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-016-0451-8

Keywords

Navigation