Skip to main content

Advertisement

Log in

Emerging and Mechanism-Based Therapies for Recurrent or Metastatic Merkel Cell Carcinoma

  • Skin Cancer (W Sharfman, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin cancer with a disease-specific mortality of approximately 40 %. The association of MCC with a recently discovered polyomavirus, combined with the increased incidence and mortality of MCC among immunocompromised patients, highlight the importance of the immune system in controlling this cancer. Initial management of MCC is summarized within the NCCN guidelines and in recently published reviews. The high rate of recurrent and metastatic disease progression in MCC, however, presents a major challenge in a cancer that lacks mechanism-based, disease-specific therapies. Traditional treatment approaches have focused on cytotoxic chemotherapy that, despite frequent initial efficacy, rarely provides durable responses and has high morbidity among the elderly. In addition, the immunosuppressive nature of chemotherapy is of concern when treating a virus-associated cancer for which survival is unusually tightly linked to immune function. With a median survival of 9.6 months after development of an initial metastasis (n = 179, described herein), and no FDA-approved agents for this cancer, there is an urgent need for more effective treatments. We review diverse management options for patients with advanced MCC, with a focus on emerging and mechanism-based therapies, some of which specifically target persistently expressed viral antigens. These treatments include single-dose radiation and novel immunotherapies, some of which are in clinical trials. Due to their encouraging efficacy, low toxicity, and lack of immune suppression, these therapies may offer viable alternatives to traditional cytotoxic chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Albores-Saavedra J, Batich K, Chable-Montero F, et al. Merkel cell carcinoma demographics, morphology, and survival based on 3870 cases: a population based study. J Cutan Pathol. 2010;37(1):20–7.

    Article  PubMed  Google Scholar 

  2. Heath M, Jaimes N, Lemos B, et al. Clinical characteristics of Merkel cell carcinoma at diagnosis in 195 patients: the AEIOU features. J Am Acad Dermatol. 2008;58(3):375–81.

    Article  PubMed  Google Scholar 

  3. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100.

    Article  PubMed  CAS  Google Scholar 

  4. Shuda M, Feng H, Kwun HJ, et al. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci U S A. 2008;105(42):16272–7.

    Article  PubMed  CAS  Google Scholar 

  5. Arora R, Shuda M, Guastafierro A, et al. Survivin is a therapeutic target in Merkel cell carcinoma. Sci Transl Med. 2012;4(133):1–11.

    Article  Google Scholar 

  6. Nardi V, Song Y, Santamaria-Barria JA, et al. Activation of PI3K signaling in Merkel cell carcinoma. Clin Cancer Res. 2012;18(5):1227–36.

    Article  PubMed  CAS  Google Scholar 

  7. Rodig SJ, Cheng J, Wardzala J, et al. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. J Clin Invest. 2012;122(12):4645–53. This study provides new, more sensitive methods for detecting MCPyV DNA and protein. Moving toward a gold standard for MCPyV detection will improve the understanding of this cancer.

    Article  PubMed  CAS  Google Scholar 

  8. Waltari M, Sihto H, Kukko H, et al. Association of Merkel cell polyomavirus infection with tumor p53, KIT, stem cell factor, PDGFR-alpha and survival in Merkel cell carcinoma. Int J Cancer. 2011;129(3):619–28.

    Article  PubMed  CAS  Google Scholar 

  9. Bhatia K, Goedert JJ, Modali R, et al. Merkel cell carcinoma subgroups by Merkel cell polyomavirus DNA relative abundance and oncogene expression. Int J Cancer. 2010;126:2240–6.

    PubMed  CAS  Google Scholar 

  10. Schrama D, Peitsch WK, Zapatka M, et al. Merkel cell polyomavirus status is not associated with clinical course of Merkel cell carcinoma. J Investig Dermatol. 2011;131(8):1631–8.

    Article  PubMed  CAS  Google Scholar 

  11. Lemos BD, Storer BE, Iyer JG, et al. Pathologic nodal evaluation improves prognostic accuracy in Merkel cell carcinoma: analysis of 5823 cases as the basis of the first consensus staging system. J Am Acad Dermatol. 2010;63(5):751–61.

    Article  PubMed  Google Scholar 

  12. Jensen K, Kohler S, Rouse RV. Cytokeratin staining in Merkel cell carcinoma: an immunohistochemical study of cytokeratins 5/6, 7, 17, and 20. Appl Immunohistochem Mol Morphol. 2000;8(4):310–5.

    Article  PubMed  CAS  Google Scholar 

  13. Cheuk W, Kwan MY, Suster S, Chan JK. Immunostaining for thyroid transcription factor 1 and cytokeratin 20 aids the distinction of small cell carcinoma from Merkel cell carcinoma, but not pulmonary from extrapulmonary small cell carcinomas. Arch Pathol Lab Med. 2001;125(2):228–31.

    PubMed  CAS  Google Scholar 

  14. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4.

    Article  PubMed  Google Scholar 

  15. Allen PJ. Merkel cell carcinoma: prognosis and treatment of patients from a single institution. J Clin Oncol. 2005;23(10):2300–9.

    Article  PubMed  Google Scholar 

  16. Gupta SG, Wang LC, Peñas PF, et al. Sentinel lymph node biopsy for evaluation and treatment of patients with Merkel cell carcinoma: the Dana-Farber experience and meta-analysis of the literature. Arch Dermatol. 2006;142(6):685–90.

    Article  PubMed  Google Scholar 

  17. Fields RC, Busam KJ, Chou JF, et al. Recurrence and survival in patients undergoing sentinel lymph node biopsy for Merkel cell carcinoma: analysis of 153 patients from a single institution. Ann Surg Oncol. 2011;18(9):2529–37.

    Article  PubMed  Google Scholar 

  18. Colgan MB, Tarantola TI, Weaver AL, et al. The predictive value of imaging studies in evaluating regional lymph node involvement in Merkel cell carcinoma. J Am Dermatol. 2012;3(18):1–7.

    Google Scholar 

  19. Hawryluk EB, O'Regan KN, Sheehy N, et al. Positron emission tomography/computed tomography imaging in Merkel cell carcinoma: a study of 270 scans in 97 patients at the Dana-Farber/Brigham and Women's Cancer Center. J Am Acad Dermatol. 2012; 1-8.

  20. Lu Y, Fleming SE, Fields RC, et al. Comparison of 18F-FDG PET/CT and 111In pentetreotide scan for detection of Merkel cell carcinoma. Clin Nucl Med. 2012;37(8):759–62.

    Article  PubMed  Google Scholar 

  21. Paulson KG, Carter JJ, Johnson LG, et al. Antibodies to Merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in Merkel cell carcinoma patients. Cancer Res. 2010;70(21):8388–97.

    Article  PubMed  CAS  Google Scholar 

  22. Santamaria-Barria J, Boland G, Yeap B, et al. Merkel cell carcinoma: 30-year experience from a single institution. Ann Surg Oncol. 2012; 1-9.

  23. Andea AA, Coit DG, Amin B, Busam KJ. Merkel cell carcinoma. Cancer. 2008;113(9):2549–58.

    Article  PubMed  Google Scholar 

  24. Paulson KG, Iyer JG, Blom A, et al. Systemic immune suppression predicts diminished Merkel cell carcinoma-specific survival independent of stage. 2012; 1-5.

  25. Touze A, Le Bidre E, Laude H, et al. High levels of antibodies against Merkel cell polyomavirus identify a subset of patients with Merkel cell carcinoma with better clinical outcome. J Clin Oncol. 2011;29(12):1612–9.

    Article  PubMed  CAS  Google Scholar 

  26. Sihto H, Joensuu H. Tumor-infiltrating lymphocytes and outcome in Merkel cell carcinoma, a virus-associated cancer. Oncoimmunology. 2012;1(8):1420–1.

    Article  PubMed  Google Scholar 

  27. Paulson KG, Iyer JG, Tegeder AR, et al. Transcriptome-wide studies of Merkel cell carcinoma and validation of intratumoral CD8+ lymphocyte invasion as an independent predictor of survival. J Clin Oncol. 2011;29(12):1539–46.

    Article  PubMed  CAS  Google Scholar 

  28. Asioli S, Righi A, de Biase D, et al. Expression of p63 is the sole independent marker of aggressiveness in localised (stage I-II) Merkel cell carcinomas. Mod Pathol. 2011;24(11):1451–61.

    Article  PubMed  CAS  Google Scholar 

  29. Goldberg SR, Neifeld JP, Frable WJ. Prognostic value of tumor thickness in patients with Merkel cell carcinoma. J Surg Oncol. 2007;95:618–22.

    Article  PubMed  Google Scholar 

  30. Londino III AV, Miles BA. The role of free tissue transfer in Merkel cell carcinoma of the head and neck. J Skin Cancer 2012; 1-6.

  31. Wynne CJ, Kearsley JH. Merkel cell tumor. A chemosensitive skin cancer. Cancer. 1988;62(1):28–31.

    Article  PubMed  CAS  Google Scholar 

  32. Voog E, Biron P, Martin JP, Blay JY. Chemotherapy for patients with locally advanced or metastatic Merkel cell carcinoma. Cancer. 2000;85(12):2589–95.

    Article  Google Scholar 

  33. Tai PT, Yu E, Winquist E, et al. Chemotherapy in neuroendocrine/Merkel cell carcinoma of the skin: case series and review of 204 cases. J Clin Oncol. 2000;18(12):2493–9.

    PubMed  CAS  Google Scholar 

  34. Poulsen M. High-risk Merkel cell carcinoma of the skin treated with synchronous carboplatin/etoposide and radiation: a Trans-Tasman Radiation Oncology Group study–TROG 96:07. J Clin Oncol. 2003;21(23):4371–6.

    Article  PubMed  CAS  Google Scholar 

  35. Miller SJ, Alam M, Andersen J, et al. NCCN guidelines version 1.2012 Merkel cell carcinoma. National Comprehensive Cancer Network 2012.

  36. Schlaak M, Podewski T, Von Bartenwerffer W, et al. Induction of durable responses by oral etoposide monochemotherapy in patients with metastatic Merkel cell carcinoma. Eur J Dermatol. 2012;22(2):187–91.

    PubMed  CAS  Google Scholar 

  37. Leonard JH, Ramsay JR, Kearsley JH, Birrell GW. Radiation sensitivity of Merkel cell carcinoma cell lines. Int J Radiat Oncol Biol Phys. 1995;32(5):1401–7.

    Article  PubMed  CAS  Google Scholar 

  38. Mojica P, Smith D, Ellenhorn JDI. Adjuvant radiation therapy is associated with improved survival in Merkel cell carcinoma of the skin. J Clin Oncol. 2007;25(9):1043–7.

    Article  PubMed  Google Scholar 

  39. Lewis KG, Weinstock MA, Weaver AL, Otley CC. Adjuvant local irradiation for Merkel cell carcinoma. Arch Dermatol. 2006;142(6):693–700.

    Article  PubMed  Google Scholar 

  40. Parvathaneni U, Iyer J, Nagase K, et al. The safety and efficacy of primary radiation therapy without upfront surgery for Merkel cell carcinoma [abstract]. Int J Radiat Oncol Phys Biol. 2012;84(3):s168.

    Article  Google Scholar 

  41. Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589–95. This study demonstrated that high dose radiation stimulates anti-tumor immune function in a mouse model. These findings challenge the current treatment model of fractionated radiotherapy plus chemotherapy and propose that a single high dose of ionizing radiation combined with immunotherapy may be more clinically efficacious.

    Article  PubMed  CAS  Google Scholar 

  42. Parvathaneni U, Iyer J, Nagase K, et al. Effective and durable palliation using a novel single fraction radiation therapy approach for Merkel cell carcinoma metastatic lesions [abstract]. Int J Radiat Oncol Phys Biol. 2012;84(3):S631.

    Article  Google Scholar 

  43. Cotter SE, Devlin PM, Sahni D, et al. Treatment of cutaneous metastases of Merkel cell carcinoma with surface-mold computer-optimized high-dose-rate brachytherapy. J Clin Oncol. 2010;28(27):464–6.

    Article  Google Scholar 

  44. Temel JS, Greer JA, Muzikansky A, et al. Early palliative care for patients with metastatic non-small-cell lung cancer. N Engl J Med. 2010;363(8):733–42.

    Article  PubMed  CAS  Google Scholar 

  45. American Society of Clinical Oncology: Palliative Care Checklist. Available at http://www.asco.org/pco/palliativecare. Accessed November 2012.

  46. Levy MH, Adolph MD, Back A, et al. Palliative care. J Natl Compr Cancer Netw. 2012;10(10):1284–309.

    Google Scholar 

  47. Papotti M, Macri L, Pagani A, et al. Quantitation of somatostatin receptor type 2 in neuroendoctine (Merkel cell) carcinoma of the skin by competitive RT-PCR. Endocr Pathol. 1999;10(1):37–46.

    Article  Google Scholar 

  48. Cirillo F, Filippini L, Lima GF, et al. Merkel cell tumor. Report of case and treatment with octreotide [abstract]. Minerva Chir. 1997;52(11):1359–65.

    PubMed  CAS  Google Scholar 

  49. Fakiha M, Letertre P, Vuillez JP, Lebeau J. Remission of Merkel cell tumor after somatostatin analog treatment. J Cancer Res Ther. 2010;6(3):382.

    Article  PubMed  CAS  Google Scholar 

  50. National Institutes of Health. Dose escalation study to investigate safety, PK and anti-tumor activity of pasireotide in patients with metastatic melanoma or Merkel cell carcinoma (MACS1670). Available at http://www.clinicaltrials.gov/ct2/show/NCT01652547?term=Merkel+Cell+Carcinoma&rank=1. Accessed December 2012.

  51. Meier G, Waldherr C, Herrmann R, et al. Successful targeted radiotherapy with 90Y-DOTATOC in a patient with Merkel cell carcinoma. Oncology. 2004;66(2):160–3.

    Article  PubMed  CAS  Google Scholar 

  52. Salavati A, Prasad V, Schneider C-P, et al. Peptide receptor radionuclide therapy of Merkel cell carcinoma using 177lutetium-labeled somatostatin analogs in combination with radiosensitizing chemotherapy: a potential novel treatment based on molecular pathology. Ann Nucl Med. 2012;26(4):365–9.

    Article  PubMed  CAS  Google Scholar 

  53. National Institutes of Health. 177Lutetium-DOTA-octreotate therapy in somatostatin receptor-expressing neuroendocrine neoplasms. Available at http://www.clinicaltrials.gov/ct2/show/NCT01237457?term=Merkel+Cell+Carcinoma&recr=Open&rank=7. Accessed December 2012.

  54. Brunner M, Thurnher D, Pammer J, et al. Expression of VEGF-A/C, VEGF-R2, PDGF-α/β, c-kit, EGFR, Her-2/Neu, Mcl-1 and Bmi-1 in Merkel cell carcinoma. Mod Pathol. 2008;21(7):876–84.

    Article  PubMed  CAS  Google Scholar 

  55. Davids MS, Davids M, Charlton A, et al. Response to a novel multitargeted tyrosine kinase inhibitor pazopanib in metastatic Merkel cell carcinoma. J Clin Oncol. 2009;27(26):97–100. This case report of oral pazopanib in MCC reports responses in both the primary tumor and pulmonary metastases to treatment with this agent. We are currently using pazopanib in our clinic for patients who have failed other therapies.

    Article  Google Scholar 

  56. Hafner C, Houben R, Baeurle A, et al. Activation of the PI3K/AKT pathway in Merkel cell carcinoma. PLoS One. 2012;7(2):e31255.

    Article  PubMed  CAS  Google Scholar 

  57. Tolcher AW, Mita A, Lewis LD, et al. Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J Clin Oncol. 2008;26(32):5198–203.

    Article  PubMed  CAS  Google Scholar 

  58. Woll PJ KM, Bhatia S, et al. Efficacy results from a phase I study of lorvotuzumab mertansine (IMGN901) in patients with CD56-positive solid tumors [abstract]. J Clin Oncol. 2011;29(Suppl):e.13582.

    Google Scholar 

  59. Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2005;439(7077):682–7.

    Article  PubMed  Google Scholar 

  60. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. In this Phase I trial, a PD-1 inhibitor generated durable responses in 18-28 % of non-small cell lung cancer, renal cell carcinoma, and melanoma patients. PD-1 blockers have promising potential efficacy in MCC and a clinical trial will hopefully be forthcoming.

    Article  PubMed  CAS  Google Scholar 

  61. Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  PubMed  CAS  Google Scholar 

  62. Afanasiev O, Yelistratova L, Miller N, et al. Merkel cell carcinoma-targeted T cells increase with disease and express therapeutically reversible PD-1 and Tim-3 exhaustion markers [abstract]. Presented at the Keystone Symposium on Cancer Immunology and Immunotherapy. Vancouver, Canada; Jan 27-Feb 1, 2013.

  63. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26.

    Article  PubMed  CAS  Google Scholar 

  64. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  PubMed  CAS  Google Scholar 

  65. Postow MA, Callahan MK, Barker CA, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31.

    Article  PubMed  CAS  Google Scholar 

  66. Fisher TS, Kamperschroer C, Oliphant T, et al. Targeting of 4-1BB by monoclonal antibody PF-05082566 enhances T-cell function and promotes anti-tumor activity. Cancer Immunol Immunother. 2012;61(10):1721–33.

    Article  PubMed  CAS  Google Scholar 

  67. National Institutes of Health. Safety, tolerability, pharmacokinetics, and immunoregulatory study of BMS-663513 in subjects with advanced and/or metastatic solid tumors. Available at http://www.clinicaltrials.gov/ct2/show/NCT01471210?term=CD137&rank=3. Accessed December 2012.

  68. Atkins MB, Robertson MJ, Gordon M, et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res. 1997;3(3):409–17.

    PubMed  CAS  Google Scholar 

  69. Lucas M. IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther. 2002;5(6):668–75.

    Article  PubMed  CAS  Google Scholar 

  70. Daud AI, DeConti RC, Andrews S, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol. 2008;26(36):5896–903.

    PubMed  CAS  Google Scholar 

  71. National Institutes of Health. Interleukin-12 gene and in vivo electroporation-mediated plasmid DNA vaccine therapy in treating patients with Merkel cell cancer. Available at http://www.clinicaltrials.gov/ct2/show/NCT01440816?term=Merkel+Cell+Carcinoma&rank=4. Accessed December 2012.

  72. Paulson KG, Tegeder AR, Willmes C, et al. Reversal of local immune evasion mechanisms and regression of human Merkel cell carcinoma by intralesional injection of interferon-beta [abstract]. J Investig Dermatol. 2011;131(Suppl1):e. s92.

    Google Scholar 

  73. Krasagakis K, Krüger-Krasagakis S, Tzanakakis GN, et al. Interferon-alpha inhibits proliferation and induces apoptosis of merkel cell carcinoma in vitro. Cancer Invest. 2008;26(6):562–8.

    Article  PubMed  CAS  Google Scholar 

  74. Willmes C, Adam C, Alb M, et al. Type I and II IFNs inhibit Merkel cell carcinoma via modulation of the Merkel cell polyomavirus T antigens. Cancer Res. 2012;72(8):2120–8.

    Article  PubMed  CAS  Google Scholar 

  75. Nakajima H, Takaishi M, Yamamoto M, et al. Screening of the specific polyoma virus as diagnostic and prognostic tools for Merkel cell carcinoma. J Dermatol Sci. 2009;56(3):211–3.

    Article  PubMed  Google Scholar 

  76. Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7.

    Article  PubMed  CAS  Google Scholar 

  77. Afanasiev O, Chapui A, Iyer J, et al. Merkel cell carcinoma therapy with viral oncoprotein-specific T cells in combination with immunostimulatory adjuvants [abstract]. J Investig Dermatol. 2012;132(S1):S96.

    Google Scholar 

  78. Johnson LA, Morgan RA, Dudley ME, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46.

    Article  PubMed  CAS  Google Scholar 

  79. Fishman MN, Thompson JA, Pennock GK, et al. Phase I trial of ALT-801, an interleukin-2/T-cell receptor fusion protein targeting p53 (aa264-272)/HLA-A*0201 complex, in patients with advanced malignancies. Clin Cancer Res. 2011;17(24):7765–75.

    Article  PubMed  CAS  Google Scholar 

  80. Samlowski WE, Moon J, Tuthill RJ, et al. A phase II trial of imatinib mesylate in Merkel cell carcinoma (Neuroendocrine carcinoma of the skin). Am J Clin Oncol. 2010;33(5):495–9.

    Article  PubMed  CAS  Google Scholar 

  81. Yang Q, Hornick JL, Granter SR, Wang LC. Merkel cell carcinoma: lack of KIT positivity and implications for the use of imatinib mesylate. Appl Immunohistochem Mol Morphol. 2009;17(4):276–81.

    Article  PubMed  CAS  Google Scholar 

  82. Shah MH, Varker KA, Collamore M, et al. G3139 (Genasense) in patients with advanced Merkel cell carcinoma. Am J Clin Oncol. 2009;32(2):174–9.

    Article  PubMed  CAS  Google Scholar 

  83. Bajetta E, Zilembo N, Di Bartolomeo M, et al. Treatment of metastatic carcinoids and other neuroendocrine tumors with recombinant interferon-alpha-2a. A study by the Italian trials in Medical Oncology Group. Cancer. 1993;72(10):3099–105.

    Article  PubMed  CAS  Google Scholar 

  84. Biver-Dalle C, Nguyen T, Touzé A, et al. Use of interferon-alpha in two patients with Merkel cell carcinoma positive for Merkel cell polyomavirus. Acta Oncol. 2011;50(3):479–80.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by T32 ES 7032-35, ARCS Fellowship (NM); NIH- R01CA16252, NIH-RC2CA147820, NIH-K24-CA139052, NIH-U01-CA-154967, Michael Piepkorn Endowment (PN); MCC Patient Gift Fund, David & Rosalind Bloom Fund for MCC.

Conflict of Interest

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Nghiem MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, N.J., Bhatia, S., Parvathaneni, U. et al. Emerging and Mechanism-Based Therapies for Recurrent or Metastatic Merkel Cell Carcinoma. Curr. Treat. Options in Oncol. 14, 249–263 (2013). https://doi.org/10.1007/s11864-013-0225-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-013-0225-9

Keywords

Navigation