Skip to main content

Advertisement

Log in

Targeting myeloid regulatory cells in cancer by chemotherapeutic agents

  • UNIVERSITY OF PITTSBURGH IMMUNOLOGY 2011
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Recent findings in humans and numerous experimental models provide evidence of the important role of immune regulatory cells in cancer and various diseases. “Myeloid regulatory cells” (MRC) include myeloid-derived suppressor cells, regulatory dendritic cells, regulatory macrophages, and subsets of granulocytes that expand during pathologic conditions and that have the ability to suppress cellular immunity. A decrease in MRC population and/or activity has been shown to have positive immune-potentiating effects. Several clinical trials have thus been initiated with the goal of manipulating the expansion or activation of these cells and thereby improving patient immune responses. New data from our own and other laboratories recently revealed that ultralow noncytotoxic doses of certain chemotherapeutic drugs could up-regulate antitumor immunity by modulating the formation, differentiation, and/or function of MRC. This new phenomenon, termed “chemomodulation,” allows for the regulation of the tumor microenvironment without the undesirable toxic effects associated with conventional chemotherapy. However, further studies are required before this new targeted therapy can find its way to patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Norton L, Massague J. Is cancer a disease of self-seeding? Nat Med. 2006;12(8):875–8.

    Article  PubMed  CAS  Google Scholar 

  2. Nagaraj S, Gabrilovich DI. Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res. 2008;68(8):2561–3.

    Article  PubMed  CAS  Google Scholar 

  3. Ko JS, Bukowski RM, Fincke JH. Myeloid-derived suppressor cells: a novel therapeutic target. Curr Oncol Rep. 2009;11(2):87–93.

    Article  PubMed  CAS  Google Scholar 

  4. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182(8):4499–506.

    Article  PubMed  CAS  Google Scholar 

  5. Lin A, et al. Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett. 2010;127:7–84.

    Article  Google Scholar 

  6. Nagaraj S, et al. Regulatory myeloid suppressor cells in health and disease. Cancer Res. 2009;69(19):7503–6.

    Article  PubMed  CAS  Google Scholar 

  7. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74.

    Article  PubMed  CAS  Google Scholar 

  8. Suzuki E, et al. Gemcitabine selectively eliminates splenic Gr-1 +/CD11b + myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res. 2005;11(18):6713–21.

    Article  PubMed  CAS  Google Scholar 

  9. Ugel S, et al. Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol. 2009;9(4):470–81.

    Article  PubMed  CAS  Google Scholar 

  10. Kusmartsev S, et al. Antigen-specific inhibition of CD8 + T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol. 2004;172(2):989–99.

    PubMed  CAS  Google Scholar 

  11. Kusmartsev S, Nagaraj S, Gabrilovich DI. Tumor-associated CD8 + T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol. 2005;175(7):4583–92.

    PubMed  CAS  Google Scholar 

  12. Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother. 2006;55(3):237–45.

    Article  PubMed  Google Scholar 

  13. Talmadge JE. Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res. 2007;13(18 Pt 1):5243–8.

    Article  PubMed  CAS  Google Scholar 

  14. Ribechini E, et al. Subsets, expansion and activation of myeloid-derived suppressor cells. Med Microbiol Immunol. 2010;199(3):273–81.

    Article  PubMed  CAS  Google Scholar 

  15. Ilkovitch D, Lopez DM. The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res. 2009;69(13):5514–21.

    Article  PubMed  CAS  Google Scholar 

  16. Huang B, et al. Gr-1 + CD115 + immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123–31.

    Article  PubMed  CAS  Google Scholar 

  17. Yang R, et al. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1 + CD11b + myeloid cells. Cancer Res. 2006;66(13):6807–15.

    Article  PubMed  CAS  Google Scholar 

  18. Hoechst B, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008;135(1):234–43.

    Article  PubMed  CAS  Google Scholar 

  19. Rodriguez PC, et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 2009;69(4):1553–60.

    Article  PubMed  CAS  Google Scholar 

  20. Poschke I, et al. Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83 and DC-sign. Cancer Res. 2010;70(11):4335–45.

    Article  PubMed  CAS  Google Scholar 

  21. Youn JI, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008;181(8):5791–802.

    PubMed  CAS  Google Scholar 

  22. Haile LA, et al. CD49d Is a New Marker for Distinct Myeloid-Derived Suppressor Cell Subpopulations in Mice. J Immunol. 2010;185(1):203–10.

    Article  PubMed  CAS  Google Scholar 

  23. Umemura N, et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol. 2008;83(5):1136–44.

    Article  PubMed  CAS  Google Scholar 

  24. Dolcetti L, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol. 2010;40(1):22–35.

    Article  PubMed  CAS  Google Scholar 

  25. Gallina G, et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8 + T cells. J Clin Invest. 2006;116(10):2777–90.

    Article  PubMed  CAS  Google Scholar 

  26. Shurin MR, et al. Regulatory dendritic cells: New targets for cancer immunotherapy. Cancer Biol Ther. 2011; 11:11 (in press).

    Google Scholar 

  27. Sato K, et al. Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood. 2003;101(9):3581–9.

    Article  PubMed  CAS  Google Scholar 

  28. Sato K, et al. Naturally occurring regulatory dendritic cells regulate murine cutaneous chronic graft-versus-host disease. Blood. 2009;113(19):4780–9.

    Article  PubMed  CAS  Google Scholar 

  29. Cook CH, et al. Spontaneous renal allograft acceptance associated with “regulatory” dendritic cells and IDO. J Immunol. 2008;180(5):3103–12.

    PubMed  CAS  Google Scholar 

  30. Akbari O, DeKruyff RH, Umetsu DT. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol. 2001;2(8):725–31.

    Article  PubMed  CAS  Google Scholar 

  31. Isomura I, et al. Induction of regulatory dendritic cells by topical application of NF-kappaB decoy oligodeoxynucleotides. Immunol Lett. 2008;119(1–2):49–56.

    Article  PubMed  CAS  Google Scholar 

  32. Kojo S, et al. Induction of regulatory properties in dendritic cells by Valpha14 NKT cells. J Immunol. 2005;175(6):3648–55.

    PubMed  CAS  Google Scholar 

  33. Torisu M, et al. Protective role of interleukin-10-producing regulatory dendritic cells against murine autoimmune gastritis. J Gastroenterol. 2008;43(2):100–7.

    Article  PubMed  CAS  Google Scholar 

  34. Fujita S, et al. Regulatory dendritic cells protect against allergic airway inflammation in a murine asthmatic model. J Allergy Clin Immunol. 2008;121(1):95–104 e7.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang M, et al. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol. 2004;5(11):1124–33.

    Article  PubMed  CAS  Google Scholar 

  36. Norian LA, et al. Tumor-infiltrating regulatory dendritic cells inhibit CD8 + T cell function via l-arginine metabolism. Cancer Res. 2009;69(7):3086–94.

    Article  PubMed  CAS  Google Scholar 

  37. Liu Q, et al. Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I. J Immunol. 2009;182(10):6207–16.

    Article  PubMed  CAS  Google Scholar 

  38. Dumitriu IE, et al. Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4 + CD25 + Foxp3 + regulatory T cells. J Immunol. 2009;182(5):2795–807.

    Article  PubMed  CAS  Google Scholar 

  39. Hutchinson JA, et al. Human regulatory macrophages. Methods Mol Biol. 2011;677:181–92.

    Article  PubMed  Google Scholar 

  40. Caso R, et al. Blood monocytes from mammary tumor-bearing mice: early targets of tumor-induced immune suppression? Int J Oncol. 2010;37(4):891–900.

    PubMed  CAS  Google Scholar 

  41. Torroella-Kouri M, et al. Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res. 2009;69(11):4800–9.

    Article  PubMed  CAS  Google Scholar 

  42. Edwards JP, Zhang X, Mosser DM. The expression of heparin-binding epidermal growth factor-like growth factor by regulatory macrophages. J Immunol. 2009;182(4):1929–39.

    Article  PubMed  CAS  Google Scholar 

  43. Sinha P, et al. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007;179(2):977–83.

    PubMed  CAS  Google Scholar 

  44. Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 2001;61(12):4756–60.

    PubMed  CAS  Google Scholar 

  45. Brandau S, et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol. 2011;89(2):311–7.

    Article  PubMed  CAS  Google Scholar 

  46. Peranzoni E, et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol. 2010;22(2):238–44.

    Article  PubMed  CAS  Google Scholar 

  47. Ozao-Choy J, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 2009;69(6):2514–22.

    Article  PubMed  CAS  Google Scholar 

  48. Suzuki E, et al. Gemcitabine has significant immunomodulatory activity in murine tumor models independent of its cytotoxic effects. Cancer Biol Ther. 2007;6(6):880–5.

    Article  PubMed  CAS  Google Scholar 

  49. Vincent J, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70(8):3052–61.

    Article  PubMed  CAS  Google Scholar 

  50. Bunt SK, et al. Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol. 2009;85(6):996–1004.

    Article  PubMed  CAS  Google Scholar 

  51. Corzo CA, et al. HIF-1{alpha} regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010.

  52. Narita Y, et al. Potential differentiation of tumor bearing mouse CD11b + Gr-1 + immature myeloid cells into both suppressor macrophages and immunostimulatory dendritic cells. Biomed Res. 2009;30(1):7–15.

    Article  PubMed  CAS  Google Scholar 

  53. Greifenberg V, et al. Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol. 2009;39(10):2865–76.

    Article  PubMed  CAS  Google Scholar 

  54. Pan PY, et al. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood. 2008;111(1):219–28.

    Article  PubMed  CAS  Google Scholar 

  55. Sinha P, et al. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol. 2008;181(7):4666–75.

    PubMed  CAS  Google Scholar 

  56. Lechner MG, Liebertz DJ, Epstein AL, Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol. 2010;185(4): 2273–84.

    Article  PubMed  CAS  Google Scholar 

  57. Marigo I, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 2010;32(6):790–802.

    Article  PubMed  CAS  Google Scholar 

  58. Subbaramaiah K, Dannenberg AJ. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci. 2003;24(2):96–102.

    Article  PubMed  CAS  Google Scholar 

  59. Eruslanov E, et al. Pivotal Advance: Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE2 catabolism in myeloid cells. J Leukoc Biol.

  60. Lindenberg JJ, et al. Cross-talk between tumor and myeloid cells: how to tip the balance in favor of antitumor immunity. Immunotherapy. 2011;3(1):77–96.

    Article  PubMed  CAS  Google Scholar 

  61. Greten TF, et al. Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4 + T-cell responses in patients with advanced HCC. J Immunother. 2010;33(2):211–8.

    Article  PubMed  CAS  Google Scholar 

  62. Park JY, et al. Doxorubicin enhances CD4(+) T-cell immune responses by inducing expression of CD40 ligand and 4–1BB. Int Immunopharmacol. 2009;9(13–14):1530–9.

    Article  PubMed  CAS  Google Scholar 

  63. Le HK, et al. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol. 2009;9(7–8):900–9.

    Article  PubMed  CAS  Google Scholar 

  64. Kaneno R, et al. Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J Transl Med. 2009;7:58.

    Article  PubMed  Google Scholar 

  65. Emens LA. Chemoimmunotherapy. Cancer J. 2011;16(4):295–303.

    Article  Google Scholar 

  66. Salem ML, et al. Cyclophosphamide induces dynamic alterations in the host microenvironments resulting in a Flt3 ligand-dependent expansion of dendritic cells. J Immunol. 2010;184(4):1737–47.

    Article  PubMed  CAS  Google Scholar 

  67. Diaz-Montero CM, et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58(1):49–59.

    Article  PubMed  CAS  Google Scholar 

  68. Tseng CW, et al. Pretreatment with cisplatin enhances E7-specific CD8 + T-Cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res. 2008;14(10):3185–92.

    Article  PubMed  CAS  Google Scholar 

  69. Zhong H, et al. Low-dose Paclitaxel prior to intratumoral dendritic cell vaccine modulates intratumoral cytokine network and lung cancer growth. Clin Cancer Res. 2007;13(18):5455–62.

    Article  PubMed  CAS  Google Scholar 

  70. Rossner S, et al. Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur J Immunol. 2005;35(12):3533–44.

    Article  PubMed  Google Scholar 

  71. Zhou Z, et al. Development and function of myeloid-derived suppressor cells generated from mouse embryonic and hematopoietic stem cells. Stem Cells. 2010;28(3):620–32.

    PubMed  CAS  Google Scholar 

  72. George S. Sunitinib, a multitargeted tyrosine kinase inhibitor, in the management of gastrointestinal stromal tumor. Curr Oncol Rep. 2007;9(4):323–7.

    Article  PubMed  CAS  Google Scholar 

  73. Ko JS, et al. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 2010;70(9):3526–36.

    Article  PubMed  CAS  Google Scholar 

  74. Kao J, et al., Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol Hematol.

  75. Nagaraj S, et al. Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res. 2007;16(6):1812–23.

    Article  Google Scholar 

  76. Capuano G, et al. Modulators of arginine metabolism support cancer immunosurveillance. BMC Immunol. 2009;10:1.

    Article  PubMed  Google Scholar 

  77. Ghosh N, et al. COX-2 as a target for cancer chemotherapy. Pharmacol Rep. 62(2): 233–244.

  78. Gately S, Li WW. Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol. 2004;31((2 Suppl 7)):2–11.

    Article  PubMed  CAS  Google Scholar 

  79. Dhawan D, et al. Effects of short-term celecoxib treatment in patients with invasive transitional cell carcinoma of the urinary bladder. Mol Cancer Ther. 9(5): 1371–1377.

  80. Li S, et al. Mechanism of growth inhibitory effects of cyclooxygenase-2 inhibitor-NS398 on cancer cells. Cancer Invest. 2008;26(4):333–7.

    Article  PubMed  CAS  Google Scholar 

  81. Ashok V, et al. Selective cyclooxygenase-2 (COX-2) inhibitors and breast cancer risk. Breast.

  82. Apetoh L, et al. Harnessing dendritic cells in cancer. Semin Immunol. 2011;23(1):42–9.

    Article  PubMed  CAS  Google Scholar 

  83. Shurin GV, Amina N, Shurin MR. Cancer therapy and dendritic cell immunomodulation. In: Shurin MR, Salter RD, editors. Dendritic cells in cancer, New York: Springer; 2009. p. 201–216.

  84. Wada S, et al. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res. 2009;69(10):4309–18.

    Article  PubMed  CAS  Google Scholar 

  85. Radojcic V, et al. Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination. Cancer Immunol Immunother. 2010;59(1):137–48.

    Article  PubMed  CAS  Google Scholar 

  86. Salem ML, El-Naggar SA, Cole DJ. Cyclophosphamide induces bone marrow to yield higher numbers of precursor dendritic cells in vitro capable of functional antigen presentation to T cells in vivo. Cell Immunol. 2010;261(2):134–43.

    Article  PubMed  CAS  Google Scholar 

  87. Pfannenstiel LW, et al. Paclitaxel enhances early dendritic cell maturation and function through TLR4 signaling in mice. Cell Immunol. 2010;263(1):79–87.

    Article  PubMed  CAS  Google Scholar 

  88. Byrd-Leifer CA, et al. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur J Immunol. 2001;31(8):2448–57.

    Article  PubMed  CAS  Google Scholar 

  89. Chan OT, Yang LX. The immunological effects of taxanes. Cancer Immunol Immunother. 2000;49(4–5):181–5.

    Article  PubMed  CAS  Google Scholar 

  90. Kalechman Y, et al. The antitumoral effect of the immunomodulator AS101 and paclitaxel (Taxol) in a murine model of lung adenocarcinoma. J Immunol. 1996;156(3):1101–9.

    PubMed  CAS  Google Scholar 

  91. Manthey CL, et al. Taxol provides a second signal for murine macrophage tumoricidal activity. J Immunol. 1994;152(2):825–31.

    PubMed  CAS  Google Scholar 

  92. Shurin GV, et al. Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J Immunol. 2009;183(1):137–44.

    Article  PubMed  CAS  Google Scholar 

  93. Kodumudi KN, et al. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res. 2010;16(18):4583–94.

    Article  PubMed  CAS  Google Scholar 

  94. Burkhart CA, et al. Relationship between the structure of taxol and other taxanes on induction of tumor necrosis factor-alpha gene expression and cytotoxicity. Cancer Res. 1994;54(22):5779–82.

    PubMed  CAS  Google Scholar 

  95. Apetoh L, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.

    Article  PubMed  CAS  Google Scholar 

  96. Obeid M, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13(1):54–61.

    Article  PubMed  CAS  Google Scholar 

  97. Taieb J, et al. Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J Immunol. 2006;176(5):2722–9.

    PubMed  CAS  Google Scholar 

  98. Medina-Echeverz J, et al. Successful colon cancer eradication after chemoimmunotherapy is associated with profound phenotypic change of intratumoral myeloid cells. J Immunol. 2011;186(2):807–15.

    Article  PubMed  CAS  Google Scholar 

  99. Pulaski HL, et al. Identifying alemtuzumab as an anti-myeloid cell antiangiogenic therapy for the treatment of ovarian cancer. J Transl Med. 2009;7:49.

    Article  PubMed  Google Scholar 

  100. Gabrilovich DI, et al. Mechanism of immune dysfunction in cancer mediated by immature Gr-1 + myeloid cells. J Immunol. 2001;166(9):5398–406.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina V. Shurin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naiditch, H., Shurin, M.R. & Shurin, G.V. Targeting myeloid regulatory cells in cancer by chemotherapeutic agents. Immunol Res 50, 276–285 (2011). https://doi.org/10.1007/s12026-011-8213-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-011-8213-2

Keywords

Navigation