Skip to main content
Log in

Generation and Comparative Characterization of Glycosylated and Aglycosylated Human IgG1 Antibodies

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Monoclonal antibodies (mAbs) are the fastest growing class of biopharmaceuticals reflecting their diverse applications in research and the clinic. The correct glycosylation of mAbs is required to elicit effector functions such as complement-dependent and antibody-dependent cell-mediated cytotoxicity, although these may be undesirable for the treatment of certain chronic diseases. To gain insight into the properties of glycan-deficient mAbs, we generated and characterized six different aglycosylated human IgG1 mAbs (carrying the N297A mutation) and compared them to their glycosylated counterparts. We found no differences in solubility or heterogeneity, and all mAbs the remained stable in stress tests at 4 and 37 °C. Surface plasmon resonance spectroscopy showed no differences in binding affinity, and the in vivo terminal serum half-life and plasma clearance were similar in rats. However, differential scanning calorimetry revealed that the aglycosylated mAbs contained a less stable CH2 domain and they were also significantly more susceptible to pH-induced aggregation. We conclude that aglycosylated mAbs are functionally equivalent to their glycosylated counterparts and could be particularly suitable for certain therapeutic applications, such as the treatment of chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Tm :

Transition midpoint

ADCC:

Antibody-dependent cell-mediated cytotoxicity

CDC:

Complement-dependent cytotoxicity

References

  1. Jefferis, R. (2009). Glycosylation as a strategy to improve antibody-based therapeutics. Nature Reviews Drug Discovery, 8, 226–234.

    Article  CAS  Google Scholar 

  2. McCarron, P. A., et al. (2005). Antibody conjugates and therapeutic strategies. Molecular Interventions, 5, 368–380.

    Article  CAS  Google Scholar 

  3. Carter, P. J. (2006). Potent antibody therapeutics by design. Nature Reviews Immunology, 6, 343–357.

    Article  CAS  Google Scholar 

  4. Moutel, S., & Perez, F. (2008). Antibodies–Europe. Engineering the next generation of antibodies. Biotechnology Journal, 3, 298–300.

    Article  CAS  Google Scholar 

  5. Reichert, J. M. (2007). Trends in the development and approval of monoclonal antibodies for viral infections. BioDrugs, 21, 1–7.

    Article  CAS  Google Scholar 

  6. Jefferis, R. (2007). Antibody therapeutics: Isotype and glycoform selection. Expert Opinion on Biological Therapy, 7, 1401–1413.

    Article  CAS  Google Scholar 

  7. Correia, I. R. (2010). Stability of IgG isotypes in serum. MAbs., 2, 221–232.

    Article  Google Scholar 

  8. Hari, S. B., et al. (2010). Acid-induced aggregation of human monoclonal IgG1 and IgG2: Molecular mechanism and the effect of solution composition. Biochemistry, 49, 9328–9338.

    Article  CAS  Google Scholar 

  9. Ishikawa, T., et al. (2010). Influence of pH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies. Biological and Pharmaceutical Bulletin, 33, 1413–1417.

    Article  CAS  Google Scholar 

  10. Kayser, V., et al. (2011). Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies. Biotechnology Journal, 6, 38–44.

    Article  CAS  Google Scholar 

  11. Millward, T. A., et al. (2008). Effect of constant and variable domain glycosylation on pharmacokinetics of therapeutic antibodies in mice. Biologicals, 36, 41–47.

    Article  CAS  Google Scholar 

  12. Tao, M. H., & Morrison, S. L. (1989). Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. The Journal of Immunology, 143, 2595–2601.

    CAS  Google Scholar 

  13. Gamble, C. N. (1966). The role of soluble aggregates in the primary immune response of mice to human gamma globulin. International Archives of Allergy and Immunology, 30, 446–455.

    Article  CAS  Google Scholar 

  14. Mett, V., et al. (2008). Plants as biofactories. Biologicals., 36, 354–358.

    Article  Google Scholar 

  15. Warner, T. G. (1999). Enhancing therapeutic glycoprotein production in Chinese hamster ovary cells by metabolic engineering endogenous gene control with antisense DNA and gene targeting. Glycobiology, 9, 841–850.

    Article  CAS  Google Scholar 

  16. Sethuraman, N., & Stadheim, T. A. (2006). Challenges in therapeutic glycoprotein production. Current Opinion in Biotechnology, 17, 341–346.

    Article  CAS  Google Scholar 

  17. Schmidt, F. R. (2004). Recombinant expression systems in the pharmaceutical industry. Applied Microbiology and Biotechnology, 65, 363–372.

    Article  CAS  Google Scholar 

  18. Gasser, B., & Mattanovich, D. (2007). Antibody production with yeasts and filamentous fungi: On the road to large scale? Biotechnology Letters, 29, 201–212.

    Article  CAS  Google Scholar 

  19. Gasser, B., et al. (2006). Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnology and Bioengineering, 94, 353–361.

    Article  CAS  Google Scholar 

  20. Jeong, K. J., Jang, S. H., & Velmurugan, N. (2011). Recombinant antibodies: Engineering and production in yeast and bacterial hosts. Biotechnology Journal, 6, 16–27.

    Article  CAS  Google Scholar 

  21. Porro, D., et al. (2005). Recombinant protein production in yeasts. Molecular Biotechnology, 31, 245–259.

    Article  CAS  Google Scholar 

  22. Jung, S. T., et al. (2011). Bypassing glycosylation: Engineering aglycosylated full-length IgG antibodies for human therapy. Current Opinion in Biotechnology, 22, 858–867.

    Article  CAS  Google Scholar 

  23. Dyson, M. R., & Durocher, Y. (2007). In M. R. Dyson and Y. Durocher (Eds.), Methods express. Bloxham: Scion Publishing Ltd.

  24. Benet, L. Z., & Galeazzi, R. L. (1979). Noncompartmental determination of the steady-state volume of distribution. Journal of Pharmaceutical Sciences, 68, 1071–1074.

    Article  CAS  Google Scholar 

  25. Yamaoka, K., Nakagawa, T., & Uno, T. (1978). Statistical moments in pharmacokinetics. Journal of Pharmacokinetics and Biopharmaceutics, 6, 547–558.

    CAS  Google Scholar 

  26. Charter, M. K. (1989). The estimation of moments: A technical note. Journal of Pharmacokinetics and Biopharmaceutics, 17, 203–208.

    CAS  Google Scholar 

  27. Chan, A. C., & Carter, P. J. (2010). Therapeutic antibodies for autoimmunity and inflammation. Nature Reviews Immunology, 10, 301–316.

    Article  CAS  Google Scholar 

  28. Sazinsky, S. L., et al. (2008). Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proceedings of the National Academy of Sciences of the United States of America, 105, 20167–20172.

    Article  CAS  Google Scholar 

  29. Huber, R., et al. (1976). Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature, 264, 415–420.

    Article  CAS  Google Scholar 

  30. Deisenhofer, J. (1981). Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry, 20, 2361–2370.

    Article  CAS  Google Scholar 

  31. Krapp, S., et al. (2003). Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. Journal of Molecular Biology, 325, 979–989.

    Article  CAS  Google Scholar 

  32. Bhatt, N. P., Patel, K., & Borchardt, R. T. (1990). Chemical pathways of peptide degradation. I. Deamidation of adrenocorticotropic hormone. Pharmaceutical Research, 7, 593–599.

    Article  CAS  Google Scholar 

  33. Chi, E. Y., et al. (2003). Roles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor. Protein Science, 12, 903–913.

    Article  CAS  Google Scholar 

  34. Chumsae, C., et al. (2007). Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 850, 285–294.

    Article  CAS  Google Scholar 

  35. Rosenberg, A. S. (2006). Effects of protein aggregates: An immunologic perspective. AAPS Journal, 8, E501–E507.

    Article  Google Scholar 

  36. Schellekens, H. (2002). Bioequivalence and the immunogenicity of biopharmaceuticals. Nature Reviews Drug Discovery, 1, 457–462.

    Article  CAS  Google Scholar 

  37. Wang, W. (2005). Protein aggregation and its inhibition in biopharmaceutics. International Journal of Pharmaceutics, 289, 1–30.

    Article  CAS  Google Scholar 

  38. Vermeer, A. W., Giacomelli, C. E., & Norde, W. (2001). Adsorption of IgG onto hydrophobic teflon. Differences between the F(ab) and F(c) domains. Biochimica et Biophysica Acta, 1526, 61–69.

    Article  CAS  Google Scholar 

  39. Goldberg, D. S., et al. (2010). Formulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: Role of conformational and colloidal stability. Journal of Pharmaceutical Sciences, 100, 1306–1315.

    Article  Google Scholar 

  40. Garber, E., & Demarest, S. J. (2007). A broad range of Fab stabilities within a host of therapeutic IgGs. Biochemical and Biophysical Research Communications, 355, 751–757.

    Article  CAS  Google Scholar 

  41. Feige, M. J., Walter, S., & Buchner, J. (2004). Folding mechanism of the CH2 antibody domain. Journal of Molecular Biology, 344, 107–118.

    Article  CAS  Google Scholar 

  42. Ejima, D., et al. (2007). Effects of acid exposure on the conformation, stability, and aggregation of monoclonal antibodies. Proteins, 66, 954–962.

    Article  CAS  Google Scholar 

  43. Kayser, V., et al. (2010). Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies. Biotechnology Journal, 6, 38–44.

    Article  Google Scholar 

  44. Fesinmeyer, R. M., et al. (2009). Effect of ions on agitation- and temperature-induced aggregation reactions of antibodies. Pharmaceutical Research, 26, 903–913.

    Article  CAS  Google Scholar 

  45. Kanai, S., et al. (2008). Reversible self-association of a concentrated monoclonal antibody solution mediated by Fab-Fab interaction that impacts solution viscosity. Journal of Pharmaceutical Sciences, 97, 4219–4227.

    Article  CAS  Google Scholar 

  46. Yadav, S., et al. (2010). Specific interactions in high concentration antibody solutions resulting in high viscosity. Journal of Pharmaceutical Sciences, 99, 1152–1168.

    Article  CAS  Google Scholar 

  47. Jefferis, R. (2009). Recombinant antibody therapeutics: The impact of glycosylation on mechanisms of action. Trends in Pharmacological Sciences, 30, 356–362.

    Article  CAS  Google Scholar 

  48. Lee, S. J., et al. (2002). Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science, 295, 1898–1901.

    Article  CAS  Google Scholar 

  49. Stockert, R. J. (1995). The asialoglycoprotein receptor: Relationships between structure, function, and expression. Physiological Reviews, 75, 591–609.

    CAS  Google Scholar 

  50. Junghans, R. P., & Anderson, C. L. (1996). The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proceedings of the National Academy of Sciences of the United States of America, 93, 5512–5516.

    Article  CAS  Google Scholar 

  51. Simister, N. E., & Ahouse, J. C. (1996). The structure and evolution of FcRn. Research in Immunology, 147, 333–337. discussion 353.

    Article  CAS  Google Scholar 

  52. Newkirk, M. M., et al. (1996). Differential clearance of glycoforms of IgG in normal and autoimmune-prone mice. Clinical and Experimental Immunology, 106, 259–264.

    Article  CAS  Google Scholar 

  53. Wright, A., & Morrison, S. L. (1994). Effect of altered CH2-associated carbohydrate structure on the functional properties and in vivo fate of chimeric mouse-human immunoglobulin G1. Journal of Experimental Medicine, 180, 1087–1096.

    Article  CAS  Google Scholar 

  54. Dall’Acqua, W. F., et al. (2002). Increasing the affinity of a human IgG1 for the neonatal Fc receptor: Biological consequences. Journal of Immunology, 169, 5171–5180.

    Google Scholar 

Download references

Acknowledgments

We thank all members of Cell and Protein Sciences, Bayer Pharma AG who contributed to this manuscript. We thank Tim Brandenburger and Doris Winkler for excellent technical support in the pharmacokinetic in vivo studies and bioanalysis of plasma samples. We are especially grateful to Christoph Freiberg for support in cloning and expression. We thank Axel Harrenga for help with Biacore analysis. We also thank Richard Twyman and Fred Aswad for critical reading of the manuscript. This study was funded by BAYER Pharma AG, Wuppertal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Linden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hristodorov, D., Fischer, R., Joerissen, H. et al. Generation and Comparative Characterization of Glycosylated and Aglycosylated Human IgG1 Antibodies. Mol Biotechnol 53, 326–335 (2013). https://doi.org/10.1007/s12033-012-9531-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9531-x

Keywords

Navigation