Skip to main content

Advertisement

Log in

HMGB1 in Development and Diseases of the Central Nervous System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

High mobility group box 1 (HMGB1) is widely expressed in cells of vertebrates in two forms: a nuclear “architectural” factor and a secreted inflammatory factor. During early brain development, HMGB1 displays a complex temporal and spatial distribution pattern in the central nervous system. It facilitates neurite outgrowth and cell migration critical for processes, such as forebrain development. During adulthood, HMGB1 serves to induce neuroinflammation after injury, such as lesions in the spinal cord and brain. Receptor for advanced glycation end products and Toll-like receptors signal transduction pathways mediate HMGB1-induced neuroinflammation and necrosis. Increased levels of endogenous HMGB1 have also been detected in neurodegenerative diseases. However, in Huntington’s disease, HMGB1 has been reported to protect neurons through activation of apurinic/apyrimidinic endonuclease and 5′-flap endonuclease-1, whereas in other neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis, HMGB1 serves as a risk factor for memory impairment, chronic neurodegeneration, and progression of neuroinflammation. Thus, HMGB1 plays important and double-edged roles during neural development and neurodegeneration. The HMGB1-mediated pathological mechanisms have remained largely elusive. Knowledge of these mechanisms is likely to lead to therapeutic targets for neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goodwin GH, Sanders C, Johns EW (1973) A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem 38(1):14–19

    Article  PubMed  CAS  Google Scholar 

  2. Hardman CH, Broadhurst RW, Raine AR, Grasser KD, Thomas JO, Laue ED (1995) Structure of the A-domain of HMG1 and its interaction with DNA as studied by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry 34(51):16596–16607

    Article  PubMed  CAS  Google Scholar 

  3. Read CM, Cary PD, Crane-Robinson C, Driscoll PC, Norman DG (1993) Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res 21(15):3427–3436

    Article  PubMed  CAS  Google Scholar 

  4. Weir HM, Kraulis PJ, Hill CS, Raine AR, Laue ED, Thomas JO (1993) Structure of the HMG box motif in the B-domain of HMG1. EMBO J 12(4):1311–1319

    PubMed  CAS  Google Scholar 

  5. Bianchi ME, Beltrame M (2000) Upwardly mobile proteins. Workshop: the role of HMG proteins in chromatin structure, gene expression and neoplasia. EMBO Rep 1(2):109–114

    Article  PubMed  CAS  Google Scholar 

  6. Muller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A, Beltrame M, Bianchi ME (2001) New EMBO members’ review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J 20(16):4337–4340

    Article  PubMed  CAS  Google Scholar 

  7. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285(5425):248–251

    Article  PubMed  CAS  Google Scholar 

  8. Enokido Y, Yoshitake A, Ito H, Okazawa H (2008) Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem Biophys Res Commun 376(1):128–133

    Article  PubMed  CAS  Google Scholar 

  9. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang M, Yang H, Tracey KJ (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192(4):565–570

    Google Scholar 

  10. Merenmies J, Pihlaskari R, Laitinen J, Wartiovaara J, Rauvala H (1991) 30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane. J Biol Chem 266(25):16722–16729

    PubMed  CAS  Google Scholar 

  11. Yan SF, Yan SD, Ramasamy R, Schmidt AM (2009) Tempering the wrath of RAGE: an emerging therapeutic strategy against diabetic complications, neurodegeneration, and inflammation. Ann Med 41(6):408–422

    Google Scholar 

  12. van Zoelen MA, Yang H, Florquin S, Meijers JC, Akira S, Arnold B, Nawroth PP, Bierhaus A, Tracey KJ, van der Poll T (2008) Role of Toll-Like Receptors 2 and 4, and the Receptor for Advanced Glycation End Products (Rage) in Hmgb1 Induced Inflammation in Vivo. Shock. doi:10.1097/SHK.0b013e318186262d

  13. Wahamaa H, Schierbeck H, Hreggvidsdottir HS, Palmblad K, Aveberger AC, Andersson U, Harris HE (2011) High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthritis Res Ther 13(4):R136. doi:10.1186/ar3450

    Article  PubMed  Google Scholar 

  14. Hamada T, Torikai M, Kuwazuru A, Tanaka M, Horai N, Fukuda T, Yamada S, Nagayama S, Hashiguchi K, Sunahara N, Fukuzaki K, Nagata R, Komiya S, Maruyama I, Abeyama K (2008) Extracellular high mobility group box chromosomal protein 1 is a coupling factor for hypoxia and inflammation in arthritis. Arthritis Rheum 58(9):2675–2685

    Google Scholar 

  15. Abdulahad DA, Westra J, Limburg PC, Kallenberg CG, Bijl M (2010) HMGB1 in systemic lupus Erythematosus: Its role in cutaneous lesions development. Autoimmun Rev 9(10):661–665

    Google Scholar 

  16. Oyama Y, Hashiguchi T, Taniguchi N, Tancharoen S, Uchimura T, Biswas KK, Kawahara K, Nitanda T, Umekita Y, Lotz M, Maruyama I (2010) High-mobility group box-1 protein promotes granulomatous nephritis in adenine-induced nephropathy. Lab Invest 90(6):853–866

    Article  PubMed  CAS  Google Scholar 

  17. Huang H, Evankovich J, Yan W, Nace G, Zhang L, Ross M, Liao X, Billiar T, Xu J, Esmon CT, Tsung A (2011) Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice. Hepatology 54(3):999–1008

    Google Scholar 

  18. Tang D, Kang R, Livesey KM, Kroemer G, Billiar TR, Van Houten B, Zeh HJ 3rd, Lotze MT (2011) High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab 13(6):701–711

    Article  PubMed  CAS  Google Scholar 

  19. Tang D, Kang R, Zeh HJ 3rd, Lotze MT (2011) High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal 14(7):1315–1335

    Article  PubMed  CAS  Google Scholar 

  20. Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D et al (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270(43):25752–25761

    Article  PubMed  CAS  Google Scholar 

  21. Gao HM, Zhou H, Zhang F, Wilson BC, Kam W, Hong JS (2011) HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci 31(3):1081–1092

    Article  PubMed  CAS  Google Scholar 

  22. Daston MM, Ratner N (1991) Expression of P30, a protein with adhesive properties, in Schwann cells and neurons of the developing and regenerating peripheral nerve. J Cell Biol 112(6):1229–1239

    Article  PubMed  CAS  Google Scholar 

  23. Rauvala H, Pihlaskari R (1987) Isolation and some characteristics of an adhesive factor of brain that enhances neurite outgrowth in central neurons. J Biol Chem 262(34):16625–16635

    PubMed  CAS  Google Scholar 

  24. Kawabata H, Setoguchi T, Yone K, Souda M, Yoshida H, Kawahara K, Maruyama I, Komiya S (2010) High mobility group box 1 is upregulated after spinal cord injury and is associated with neuronal cell apoptosis. Spine (Phila Pa 1976) 35(11):1109–1115

    Google Scholar 

  25. Fages C, Nolo R, Huttunen HJ, Eskelinen E, Rauvala H (2000) Regulation of cell migration by amphoterin. J Cell Sci 113(Pt 4):611–620

    PubMed  CAS  Google Scholar 

  26. Guazzi S, Strangio A, Franzi AT, Bianchi ME (2003) HMGB1, an architectural chromatin protein and extracellular signalling factor, has a spatially and temporally restricted expression pattern in mouse brain. Gene Expr Patterns 3(1):29–33

    Article  PubMed  CAS  Google Scholar 

  27. Huang X, Wang L, Zhang H (2005) Developmental expression of the high mobility group B gene in the amphioxus, Branchiostoma belcheri tsingtauense. Int J Dev Biol 49(1):49–52

    Article  PubMed  CAS  Google Scholar 

  28. Guerin A, d’Aubenton-Carafa Y, Marrakchi E, Da Silva C, Wincker P, Mazan S, Retaux S (2009) Neurodevelopment genes in lampreys reveal trends for forebrain evolution in craniates. PLoS One 4(4):e5374. doi:10.1371/journal.pone.0005374

    Article  PubMed  Google Scholar 

  29. Zhao X, Kuja-Panula J, Rouhiainen A, Chen YC, Panula P, Rauvala H (2011) High mobility group box-1 (HMGB1; amphoterin) is required for zebrafish brain development. J Biol Chem 286(26):23200–23213

    Article  PubMed  CAS  Google Scholar 

  30. Chou DK, Evans JE, Jungalwala FB (2001) Identity of nuclear high-mobility-group protein, HMG-1, and sulfoglucuronyl carbohydrate-binding protein, SBP-1, in brain. J Neurochem 77(1):120–131

    Article  PubMed  CAS  Google Scholar 

  31. Chou DK, Zhang J, Smith FI, McCaffery P, Jungalwala FB (2004) Developmental expression of receptor for advanced glycation end products (RAGE), amphoterin and sulfoglucuronyl (HNK-1) carbohydrate in mouse cerebellum and their role in neurite outgrowth and cell migration. J Neurochem 90(6):1389–1401

    Article  PubMed  CAS  Google Scholar 

  32. Huttunen HJ, Kuja-Panula J, Rauvala H (2002) Receptor for advanced glycation end products (RAGE) signaling induces CREB-dependent chromogranin expression during neuronal differentiation. J Biol Chem 277(41):38635–38646

    Article  PubMed  CAS  Google Scholar 

  33. Srikrishna G, Huttunen HJ, Johansson L, Weigle B, Yamaguchi Y, Rauvala H, Freeze HH (2002) N-Glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth. J Neurochem 80(6):998–1008

    Article  PubMed  CAS  Google Scholar 

  34. Nair SM, Zhao Z, Chou DK, Tobet SA, Jungalwala FB (1998) Expression of HNK-1 carbohydrate and its binding protein, SBP-1, in apposing cell surfaces in cerebral cortex and cerebellum. Neuroscience 85(3):759–771

    Google Scholar 

  35. Chou DK, Schachner M, Jungalwala FB (2002) HNK-1 sulfotransferase null mice express glucuronyl glycoconjugates and show normal cerebellar granule neuron migration in vivo and in vitro. J Neurochem 82(5):1239–1251

    Article  PubMed  CAS  Google Scholar 

  36. Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW, Lee MH, Han PL, Park JS, Lee JK (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26(24):6413–6421

    Article  PubMed  CAS  Google Scholar 

  37. Shibasaki M, Sasaki M, Miura M, Mizukoshi K, Ueno H, Hashimoto S, Tanaka Y, Amaya F (2010) Induction of high mobility group box-1 in dorsal root ganglion contributes to pain hypersensitivity after peripheral nerve injury. Pain 149(3):514–521

    Article  PubMed  CAS  Google Scholar 

  38. Huang Y, Xie K, Li J, Xu N, Gong G, Wang G, Yu Y, Dong H, Xiong L (2011) Beneficial effects of hydrogen gas against spinal cord ischemia–reperfusion injury in rabbits. Brain Res 1378:125–136

    Article  PubMed  CAS  Google Scholar 

  39. Wang Q, Ding Q, Zhou Y, Gou X, Hou L, Chen S, Zhu Z, Xiong L (2009) Ethyl pyruvate attenuates spinal cord ischemic injury with a wide therapeutic window through inhibiting high-mobility group box 1 release in rabbits. Anesthesiology 110(6):1279–1286

    Article  PubMed  CAS  Google Scholar 

  40. Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, Bendszus M, Rossetti G, Nawroth PP, Bierhaus A, Schwaninger M (2008) The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 28(46):12023–12031

    Article  PubMed  CAS  Google Scholar 

  41. Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA (2008) Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 28(5):927–938

    Article  PubMed  CAS  Google Scholar 

  42. Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, Bianchi ME, Kirschning C, Wagner H, Manfredi AA, Kalden JR, Schett G, Rovere-Querini P, Herrmann M, Voll RE (2008) Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 205(13):3007–3018

    Article  PubMed  CAS  Google Scholar 

  43. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8(5):487–496

    Google Scholar 

  44. Rauvala H, Rouhiainen A (2010) Physiological and pathophysiological outcomes of the interactions of HMGB1 with cell surface receptors. Biochim Biophys Acta 1799(1–2):164–170

    PubMed  CAS  Google Scholar 

  45. Qi ML, Tagawa K, Enokido Y, Yoshimura N, Wada Y, Watase K, Ishiura S, Kanazawa I, Botas J, Saitoe M, Wanker EE, Okazawa H (2007) Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases. Nat Cell Biol 9(4):402–414

    Article  PubMed  CAS  Google Scholar 

  46. Prasad R, Liu Y, Deterding LJ, Poltoratsky VP, Kedar PS, Horton JK, Kanno S, Asagoshi K, Hou EW, Khodyreva SN, Lavrik OI, Tomer KB, Yasui A, Wilson SH (2007) HMGB1 is a cofactor in mammalian base excision repair. Mol Cell 27(5):829–841

    Article  PubMed  CAS  Google Scholar 

  47. Goula AV, Berquist BR, Wilson DM 3rd, Wheeler VC, Trottier Y, Merienne K (2009) Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington’s disease transgenic mice. PLoS Genet 5(12):e1000749. doi:10.1371/journal.pgen.1000749

    Article  PubMed  Google Scholar 

  48. Mazarati A, Maroso M, Iori V, Vezzani A, Carli M (2011) High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and receptor for advanced glycation end products. Exp Neurol 232(2):143–148

    Article  PubMed  CAS  Google Scholar 

  49. Takata K, Kitamura Y, Kakimura J, Shibagaki K, Tsuchiya D, Taniguchi T, Smith MA, Perry G, Shimohama S (2003) Role of high mobility group protein-1 (HMG1) in amyloid-beta homeostasis. Biochem Biophys Res Commun 301(3):699–703

    Article  PubMed  CAS  Google Scholar 

  50. Lindersson EK, Hojrup P, Gai WP, Locker D, Martin D, Jensen PH (2004) alpha-Synuclein filaments bind the transcriptional regulator HMGB-1. Neuroreport 15(18):2735–2739

    PubMed  CAS  Google Scholar 

  51. Andersson A, Covacu R, Sunnemark D, Danilov AI, Dal Bianco A, Khademi M, Wallstrom E, Lobell A, Brundin L, Lassmann H, Harris RA (2008) Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol 84(5):1248–1255

    Article  PubMed  CAS  Google Scholar 

  52. Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME, Vezzani A (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16(4):413–419

    Article  PubMed  CAS  Google Scholar 

  53. Casula M, Iyer AM, Spliet WG, Anink JJ, Steentjes K, Sta M, Troost D, Aronica E (2011) Toll-like receptor signaling in amyotrophic lateral sclerosis spinal cord tissue. Neuroscience 179:233–243

    Article  PubMed  CAS  Google Scholar 

  54. Choi J, Min HJ, Shin JS (2011) Increased levels of HMGB1 and pro-inflammatory cytokines in children with febrile seizures. J Neuroinflammation 8:135

    Article  PubMed  CAS  Google Scholar 

  55. Lo Coco D, Veglianese P, Allievi E, Bendotti C (2007) Distribution and cellular localization of high mobility group box protein 1 (HMGB1) in the spinal cord of a transgenic mouse model of ALS. Neurosci Lett 412(1):73–77

    Google Scholar 

  56. Aron L, Klein R (2011) Repairing the parkinsonian brain with neurotrophic factors. Trends Neurosci 34(2):88–100

    Article  PubMed  CAS  Google Scholar 

  57. Bai G, Pfaff SL (2011) Protease regulation: the Yin and Yang of neural development and disease. Neuron 72(1):9–21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Stanley Li Lin for his helpful discussion and critical language editing of the manuscript. We are also grateful to Drs. Heikki Rauvala, Firoze Jungalwala, and AnnMarie Schmidt for their thoughtful comments. This project is supported by NNSF, China (81072622) and the Li Kashing Foundation. We hope that we cited all publications relevant for this review and apologize to those groups if their publications are not adequately cited due to the limited search tools at our disposal.

Conflict of Interest

The authors declare that there are no conflict interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melitta Schachner or Yan-Qin Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, P., Schachner, M. & Shen, YQ. HMGB1 in Development and Diseases of the Central Nervous System. Mol Neurobiol 45, 499–506 (2012). https://doi.org/10.1007/s12035-012-8264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8264-y

Keywords

Navigation