Skip to main content

Advertisement

Log in

Tumor-Infiltrating Immunosuppressive Cells in Cancer-Cell Plasticity, Tumor Progression and Therapy Response

  • Original Article
  • Published:
Cancer Microenvironment

Abstract

In most tumors, cancer cells show the ability to dynamically transit from a non-cancer stem-like cell to a cancer stem-like cell (CSC) state and vice versa. This cell plasticity has been associated with the epithelial-to-mesenchymal transition program (EMT) and can be regulated by tumor cell-intrinsic mechanisms and complex interactions with various tumor microenvironment (TME) components. These interactions favor the generation of a specific “CSC niche” that helps maintain the main properties, phenotypic plasticity and metastatic potential of this subset of tumor cells. For this reason, TME has been recognized as an important promoter of tumor progression and therapy resistance. Tumors have evolved a network of immunosuppressive mechanisms that limits the cytotoxic T cell response to cancer cells. Some key players in this network are tumor-associated macrophages, myeloid-derived suppressor cells and regulatory T cells, which not only favor a pro-tumoral and immunosuppressive environment that supports tumor growth and immune evasion, but also negatively influences immunotherapy. Here, we review the relevance of cytokines and growth factors provided by immunosuppressive immune cells in regulating cancer-cell plasticity. We also discuss how cancer cells remodel their own niche to promote proliferation, stemness and EMT, and escape immune surveillance. A better understanding of CSC-TME crosstalk signaling will enable the development of effective targeted or immune therapies that block tumor growth and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merrell AJ, Stanger BZ (2016) Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17:413–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ge Y, Fuchs E (2018) Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet 19:311–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166:21–45

    Article  CAS  PubMed  Google Scholar 

  5. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. da Silva-Diz V, Lorenzo-Sanz L, Bernat-Peguera A, Lopez-Cerda M, Muñoz P (2018) Cancer cell plasticity: impact on tumor progression and therapy response. Semin Cancer Biol 53:48–58

    Article  PubMed  CAS  Google Scholar 

  7. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Binnewies M, Roberts EW, Kersten K et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 25:541–550

    Article  CAS  Google Scholar 

  9. Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150

    Article  CAS  PubMed  Google Scholar 

  10. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  CAS  PubMed  Google Scholar 

  11. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    Article  CAS  PubMed  Google Scholar 

  12. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    Article  PubMed  CAS  Google Scholar 

  13. Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16:225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells -what challenges do they pose? Nat Rev Drug Discov 13:497–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  CAS  PubMed  Google Scholar 

  18. Sica A, Massarotti M (2017) Myeloid suppressor cells in cancer and autoimmunity. J Autoimmun 85:117–125

    Article  CAS  PubMed  Google Scholar 

  19. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138:105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  21. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  CAS  PubMed  Google Scholar 

  25. Huang YC, Feng ZP (2013) The good and bad of microglia/macrophages: new hope in stroke therapeutics. Acta Pharmacol Sin 34:6–7

    Article  CAS  PubMed  Google Scholar 

  26. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ong SM, Tan YC, Beretta O, Jiang D, Yeap WH, Tai JJY, Wong WC, Yang H, Schwarz H, Lim KH, Koh PK, Ling KL, Wong SC (2012) Macrophages in human colorectal cancer are pro-inflammatory and prime T cells towards an anti-tumour type-1 inflammatory response. Eur J Immunol 42:89–100

    Article  CAS  PubMed  Google Scholar 

  28. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246

    Article  CAS  PubMed  Google Scholar 

  29. Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA, Pollard JW (2009) A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4:e6562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zheng Y, Cai Z, Wang S, Zhang X, Qian J, Hong S, Li H, Wang M, Yang J, Yi Q (2009) Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 114:3625–3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 6:1670–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, Coussens LM, Karin M, Goldrath AW, Johnson RS (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70:7465–7475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211:781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545:495–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59:1593–1600

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gajewski TF, Woo SR, Zha Y, Spaapen R, Zheng Y, Corrales L, Spranger S (2013) Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol 25:268–276

    Article  CAS  PubMed  Google Scholar 

  40. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125:3356–3364

    Article  PubMed  PubMed Central  Google Scholar 

  42. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689

    Article  CAS  PubMed  Google Scholar 

  43. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59

    Article  CAS  PubMed  Google Scholar 

  44. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3 + regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    Article  CAS  PubMed  Google Scholar 

  45. Gasteiger G, Hemmers S, Firth MA, Le Floc’h A et al (2013) IL-2–dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J Exp Med 210:1167–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380

    Article  PubMed  Google Scholar 

  47. Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, Yao J, Jin L, Wang H, Yang Y, Fu YX, Wang FS (2007) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132:2328–2339

    Article  PubMed  Google Scholar 

  48. Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434

    Article  CAS  PubMed  Google Scholar 

  49. Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, Nakajima A, Hirohashi S (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13:902–911

    Article  CAS  PubMed  Google Scholar 

  50. Kono K, Kawaida H, Takahashi A, Sugai H, Mimura K, Miyagawa N, Omata H, Fujii H (2006) CD4(+) CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother 55:1064–1071

    Article  CAS  PubMed  Google Scholar 

  51. Frey DM, Droeser RA, Viehl CT et al (2010) High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer 126:2635–2643

    CAS  PubMed  Google Scholar 

  52. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L, Coukos G (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475:226–230

    Article  CAS  PubMed  Google Scholar 

  53. Maruyama T, Kono K, Izawa S, Mizukami Y, Kawaguchi Y, Mimura K, Watanabe M, Fujii H (2010) CCL17 and CCL22 chemokines within tumor microenvironment are related to infiltration of regulatory T cells in esophageal squamous cell carcinoma. Dis Esophagus 23:422–429

    CAS  PubMed  Google Scholar 

  54. Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, Fujii H (2008) CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 122:2286–2293

    Article  CAS  PubMed  Google Scholar 

  55. von Boehmer H, Daniel C (2013) Therapeutic opportunities for manipulating TReg cells in autoimmunity and cancer. Nat Re Drug Disco 12:51–63

    Article  CAS  Google Scholar 

  56. Bopp T, Becker C, Klein M, Klein-Heßling S, Palmetshofer A, Serfling E, Heib V, Becker M, Kubach J, Schmitt S, Stoll S, Schild H, Staege MS, Stassen M, Jonuleit H, Schmitt E (2007) Cyclic adenosine monophosphate is a key component of regulatory T cell mediated suppression. J Exp Med 204:1303–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang J, Yao H, Song G, Liao X, Xian Y, Li W (2015) Regulation of epithelial-mesenchymal transition by tumor-associated macrophages in cancer. Am J Transl Res 7:1699–1711

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu CY, Xu JY, Shi XY, Huang W, Ruan TY, Xie P, Ding JL (2013) M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Investig 93:844–854

    Article  CAS  PubMed  Google Scholar 

  61. Fan QM, Jing YY, Yu GF, Kou XR, Ye F, Gao L, Li R, Zhao QD, Yang Y, Lu ZH, Wei LX (2014) Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett 352:160–168

    Article  CAS  PubMed  Google Scholar 

  62. Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, Fatho M, Lennerz V, Wölfel T, Hölzel M, Tüting T (2012) Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490:412–416

    Article  CAS  PubMed  Google Scholar 

  63. Su S, Liu Q, Chen J et al (2014) A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25:605–620

    Article  PubMed  CAS  Google Scholar 

  64. Wan S, Zhao E, Kryczek I, Vatan L, Sadovskaya A, Ludema G, Simeone DM, Zou W, Welling TH (2014) Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 147:1393–1404

    Article  CAS  PubMed  Google Scholar 

  65. Yang J, Liao D, Chen C, Liu Y, Chuang TH, Xiang R, Markowitz D, Reisfeld RA, Luo Y (2013) Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells 31:248–258

    Article  CAS  PubMed  Google Scholar 

  66. Lu H, Clauser KR, Tam WL, Fröse J, Ye X, Eaton EN, Reinhardt F, Donnenberg VS, Bhargava R, Carr SA, Weinberg RA (2014) A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 16:1105–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sainz BJr, Martín B, Tatari M, Heeschen C, Guerra S (2014) ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells. Cancer Res 74:7309–7320

    Article  CAS  PubMed  Google Scholar 

  68. Sainz BJr, Alcala S, Garcia E et al (2015) Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut 64:1921–1935

    Article  CAS  PubMed  Google Scholar 

  69. Cui TX, Kryczek I, Zhao E et al (2013) Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 39:611–621

    Article  CAS  PubMed  Google Scholar 

  70. Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong WC, Kato M, Prevost-Blondel A, Thiery JP, Abastado JP (2011) Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol 9:e1001162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li ZL, Ye SB, OuYang LY et al (2015) COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells. OncoImmunology 4:e1044712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Panni RZ, Sanford DE, Belt BA, Mitchem JB, Worley LA, Goetz BD, Mukherjee P, Wang-Gillam A, Link DC, DeNardo DG, Goedegebuure SP, Linehan DC (2014) Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunol Immunother 63:513–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oh K, Lee OY, Shon SY, Nam O, Ryu PM, Seo MW, Lee DS (2013) A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous metastasis through IL-6 trans-signaling in a murine model. Breast Cancer Res 15:R79

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhu H, Gu Y, Xue M et al (2017) CXCR2+ MDSCs promote breast cancer progression by inducing EMT and activated T cell exhaustion. Oncotarget 8:114554–114567

    Article  PubMed  PubMed Central  Google Scholar 

  75. Taki M, Abiko K, Baba T, Hamanishi J, Yamaguchi K, Murakami R, Yamanoi K, Horikawa N, Hosoe Y, Nakamura E, Sugiyama A, Mandai M, Konishi I, Matsumura N (2018) Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation. Nat Commun 9:1685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Welte T, Kim IS, Tian L, Gao X, Wang H, Li J, Holdman XB, Herschkowitz JI, Pond A, Xie G, Kurley S, Nguyen T, Liao L, Dobrolecki LE, Pang L, Mo Q, Edwards DP, Huang S, Xin L, Xu J, Li Y, Lewis MT, Wang T, Westbrook TF, Rosen JM, Zhang XHF (2016) Oncogenic mTOR signaling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol 18:632–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Peng D, Tanikawa T, Li W, Zhao L, Vatan L, Szeliga W, Wan S, Wei S, Wang Y, Liu Y, Staroslawska E, Szubstarski F, Rolinski J, Grywalska E, Stanis awek A, Polkowski W, Kurylcio A, Kleer C, Chang AE, Wicha M, Sabel M, Zou W, Kryczek I (2016) Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signaling. Cancer Res 76:3156–3165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ouzounova M, Lee E, Piranlioglu R, el Andaloussi A, Kolhe R, Demirci MF, Marasco D, Asm I, Chadli A, Hassan KA, Thangaraju M, Zhou G, Arbab AS, Cowell JK, Korkaya H (2017) Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumor plasticity during metastatic cascade. Nat Commun 8:14979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang S, Wang B, Guan C, Wu B, Cai C, Wang M, Zhang B, Liu T, Yang P (2011) Foxp3+IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J Leukoc Biol 89:85–91

    Article  CAS  PubMed  Google Scholar 

  80. Mahic M, Yaqub S, Johansson CC, Taskén K, Aandahl EM (2006) FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 177:246–254

    Article  CAS  PubMed  Google Scholar 

  81. Wang D, Fu L, Sun H, Guo L, DuBois RN (2015) Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology 149:1884–1895

    Article  CAS  PubMed  Google Scholar 

  82. Tamborero D, Rubio-Perez C, Muinos F et al (2018) A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin Cancer Res 24:3717–3728

    Article  CAS  PubMed  Google Scholar 

  83. Lee Y, Shin JH, Longmire M, Wang H, Kohrt HE, Chang HY, Sunwoo JB (2016) CD44+ cells in head and neck squamous cell carcinoma suppress t-cell-mediated immunity by selective constitutive and inducible expression of PD-L1. Clin Cancer Res 22:3571–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dongre A, Rashidian M, Reinhardt F, Bagnato A, Keckesova Z, Ploegh HL, Weinberg RA (2017) Epithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomas. Cancer Res 77:3982–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen L, Gibbons DL, Goswami S, Cortez MA, Ahn YH, Byers LA, Zhang X, Yi X, Dwyer D, Lin W, Diao L, Wang J, Roybal JD, Patel M, Ungewiss C, Peng D, Antonia S, Mediavilla-Varela M, Robertson G, Jones S, Suraokar M, Welsh JW, Erez B, Wistuba II, Chen L, Peng D, Wang S, Ullrich SE, Heymach JV, Kurie JM, Qin FXF (2014) Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 5:5241

    Article  CAS  PubMed  Google Scholar 

  86. Hugo W, Zaretslky JM, Sun L et al (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Di Tomaso T, Mazzoleni S, Wang E et al (2010) Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin Cancer Res 16:800–813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A, Griffero F, Marubbi D, Spaziante R, Bellora F, Moretta L, Moretta A, Corte G, Bottino C (2009) NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol 182:3530–3539

    Article  CAS  PubMed  Google Scholar 

  89. Linde N, Lederle W, Depner S, van Rooijen N, Gutschalk CM, Mueller MM (2012) Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages. J Pathol 227:17–28

    Article  CAS  PubMed  Google Scholar 

  90. Gazzaniga S, Bravo AI, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J, Wainstok R (2007) Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol 127:2031–2041

    Article  CAS  PubMed  Google Scholar 

  91. Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24:241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yan D, Wang HW, Bowman RL, Joyce JA (2016) STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1alpha activation. Cell Rep 16:2914–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, Daniel D (2013) CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. Oncoimmunology 2:e26968

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pyonteck SM, Akkari L, Schumacher AJ et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283

    Article  CAS  PubMed  Google Scholar 

  97. Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, Segall JE (2012) Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med 18:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. De Palma M, Lewis CE (2013) Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23:277–286

    Article  PubMed  CAS  Google Scholar 

  100. Jinushi M, Sato M, Kanamoto A, Itoh A, Nagai S, Koyasu S, Dranoff G, Tahara H (2009) Milk fat globule epidermal growth factor-8 blockade triggers tumor destruction through coordinated cell-autonomous and immune-mediated mechanisms. J Exp Med 206:1317–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen Q, Zhang XH, Massagué J (2011) Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20:538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lu X, Mu E, Wei Y et al (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging a4b1-positive osteoclast progenitors. Cancer Cell 20:701–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ye XZ, Yu SC, Bian XW (2010) Contribution of myeloid-derived suppressor cells to tumor-induced immune suppression, angiogenesis, invasion and metastasis. J Genet Genomics 37:423–430

    Article  CAS  PubMed  Google Scholar 

  104. Wang D, Sun H, Wei J, Cen B, DuBois RN (2017) CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res 77:3655–3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375

    Article  CAS  PubMed  Google Scholar 

  106. Erler JT, Bennewith KL, Cox TR et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Deng J, Liu Y, Lee H et al (2012) S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21:642–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang L, Huang J, Ren X et al (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kumar S, Wilkes DW, Samuel N, Blanco MA, Nayak A, Alicea-Torres K, Gluck C, Sinha S, Gabrilovich D, Chakrabarti R (2018) ΔNp63-driven recruitment of myeloid-derived suppressor cells promotes metastasis in triple-negative breast cancer. J Clin Invest 128:5095–5109

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111:219–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H (2008) Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118:3367–3377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RAD, Meng YG, Ferrara N (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450:825–831

    Article  CAS  PubMed  Google Scholar 

  113. Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, Johnson M, Lusis AJ, Cohen DA, Iruela-Arispe ML, Wu L (2010) Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115:1461–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25:911–920

    Article  CAS  PubMed  Google Scholar 

  115. Sharma P, Wagner K, Wolchok JD, Allison JP (2011) Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 11:805–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang L, Zhang Y (2017) Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 10:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in Cancer. Trends Immunol 40(4):310–327

    Article  CAS  PubMed  Google Scholar 

  119. Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, Utikal J, Umansky V (2018) Targeting myeloid-derived suppressor cells to BypassTumor-induced immunosuppression. Front Immunol 9:398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Orillion A, Hashimoto A, Damayanti N, Shen L, Adelaiye-Ogala R, Arisa S, Chintala S, Ordentlich P, Kao C, Elzey B, Gabrilovich D, Pili R (2017) Entinostat neutralizes myeloid derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin Cancer Res 23:5187–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL, Diaz LA, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A 111:11774–11779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sun L, Clavijo PE, Robbins Y, Patel P, Friedman J, Greene S, Das R, Silvin C, van Waes C, Horn LA, Schlom J, Palena C, Maeda D, Zebala J, Allen CT (2019) Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight 4(7)

  123. Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression -implications for anticancer therapy. Nat Rev Clin Oncol 16(6):356–371

    Article  CAS  PubMed  Google Scholar 

  124. Isakov N (2018) Cancer immunotherapy by targeting immune checkpoint receptors. World J Immunol 8(1):1–11

    Article  Google Scholar 

  125. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sckisel GD, Mirsoian A, Bouchlaka MN, Tietze JK, Chen M, Blazar BR, Murphy WJ (2015) Late administration of murine CTLA-4 blockade prolongs CD8-mediated anti-tumor effects following stimulatory cancer immunotherapy. Cancer Immunol Immunother 64:1541–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sacco PC, Maione P et al (2017) The combination of new immunotherapy and radiotherapy: a new potential treatment for locally advanced non-small cell lung Cancer. Curr Clin Pharmacol 12:4–10

    Article  CAS  PubMed  Google Scholar 

  128. Hu ZI, Ho AY, McArthur HL (2017) Combined radiation therapy and immune checkpoint blockade therapy for breast Cancer. Int J Radiat Oncol Biol Phys 99:153–164

    Article  PubMed  Google Scholar 

  129. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Cowey CL, Lao CD, Schadendorf D, Wagstaff J, Dummer R, Ferrucci PF, Smylie M, Hill A, Hogg D, Marquez-Rodas I, Jiang J, Rizzo J, Larkin J, Wolchok JD (2018) Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol 19:1480–1492

    Article  CAS  PubMed  Google Scholar 

  131. Lussier DM, Johnson JL, Hingorani P, Blattman JN (2015) Combination immunotherapy with α-CTLA-4 and α-PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma. J Immunother Cancer 3:21

    Article  PubMed  PubMed Central  Google Scholar 

  132. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, Morse MA, van Cutsem E, McDermott R, Hill A, Sawyer MB, Hendlisz A, Neyns B, Svrcek M, Moss RA, Ledeine JM, Cao ZA, Kamble S, Kopetz S, André T (2018) Durable clinical Benedit with Nivolumab plus Ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal Cancer. J Clin Oncol 36:773–779

    Article  CAS  PubMed  Google Scholar 

  133. Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, Voss MH, Sharma P, Pal SK, Razak ARA, Kollmannsberger C, Heng DYC, Spratlin J, McHenry MB, Amin A (2017) Safety and efficacy of Nivolumab in combination with Ipilimumab in metastatic renal cell Carnicoma: the CheckMate 016 study. J Clin Oncol 35:3851–3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, Chung CH, Hernandez-Aya L, Lim AM, Chang ALS, Rabinowits G, Thai AA, Dunn LA, Hughes BGM, Khushalani NI, Modi B, Schadendorf D, Gao B, Seebach F, Li S, Li J, Mathias M, Booth J, Mohan K, Stankevich E, Babiker HM, Brana I, Gil-Martin M, Homsi J, Johnson ML, Moreno V, Niu J, Owonikoko TK, Papadopoulos KP, Yancopoulos GD, Lowy I, Fury MG (2018) PD-1 blockade with Cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med 379:341–351

    Article  CAS  PubMed  Google Scholar 

  135. Pandey A, Liaukovich M, Joshi K, Avezbakiyev BI, O\'Donnell JE (2019) Uncommon presentation of metastatic squamous cell carcinoma of the skin and treatment challenges. Am J Case Rep 20:294–299

    Article  PubMed  PubMed Central  Google Scholar 

  136. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562

    Article  CAS  PubMed  Google Scholar 

  137. Sidaway P (2017) Urological cancer: Atezolizumab: an alternative to cisplatin? Nat Rev Clin Oncol 14:139

    Article  PubMed  Google Scholar 

  138. McKay RR, Bossé D et al (2018) The clinical activity of PD-1/PD-L1 inhibitors in metastatic non-clear cell renal carcinoma. Cancer Immunol Res 6:758–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Brower V (2016) Anti-PD-L1 inhibitor durvalumab in bladder cancer. Lancet Oncol 17:e275

    Article  PubMed  Google Scholar 

  140. Luo W, Wang Z, Tian P, Li W (2018) Safety and tolerability of PD-1/PD-L1 inhibitors in the treatment of non-small cell lung cancer: a meta-analysis of randomized controlled trials. J Cancer Res Clin Oncol 144:1851–1859

    Article  CAS  PubMed  Google Scholar 

  141. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499

    Article  CAS  PubMed  Google Scholar 

  142. Vonderheide RH, Glennie MJ (2013) Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res 19:1035–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tang H, Qiao J, Fu YX (2016) Immunotherapy and tumor microenvironment. Cancer Lett 370:85–90

    Article  CAS  PubMed  Google Scholar 

  144. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, Rossig C, Russell HV, Diouf O, Liu E, Liu H, Wu MF, Gee AP, Mei Z, Rooney CM, Heslop HE, Brenner MK (2011) Antitumor activity and long-term fate of chimeric antigen receptor-positive t cells in patients with neuroblastoma. Blood 118:6050–6056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, Liu E, Dakhova O, Ashoori A, Corder A, Gray T, Wu MF, Liu H, Hicks J, Rainusso N, Dotti G, Mei Z, Grilley B, Gee A, Rooney CM, Brenner MK, Heslop HE, Wels WS, Wang LL, Anderson P, Gottschalk S (2015) Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor- modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 33:1688–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pahl J, Cerwenka A (2017) Tricking the balance: Nk cells in anti-cancer immunity. Immunobiology 222:11–20

    Article  CAS  PubMed  Google Scholar 

  147. Newick K, Moon E, Albelda SM (2016) Chimeric antigen receptor T-cell therapy for solid tumors. Mol Ther Oncolytics 3:16006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339:286–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. DeNardo DG, Brennan DJ, Rexhepaj E et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mok S, Koya RC, Tsui C, Xu J, Robert L, Wu L, Graeber TG, West BL, Bollag G, Ribas A (2014) Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy. Cancer Res 74:153–161

    Article  CAS  PubMed  Google Scholar 

  151. Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W, Wu L (2013) Abrogating the protumorigenic influences of tumor-infiltrating myeloid cells by CSF1R signaling blockade improves the efficacy of radiotherapy in prostate cancer. Cancer Res 73:2782–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P, Schmid MC, Pink M, Winkler DG, Rausch M, Palombella VJ, Kutok J, McGovern K, Frazer KA, Wu X, Karin M, Sasik R, Cohen EEW, Varner JA (2016) PI3Kgamma is a molecular switch that controls immune suppression. Nature 539:437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura Y, Tahara H, Inoue N, Seya T (2012) Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl Acad Sci U S A 109:2066–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang X, Tian W, Cai X, Wang X, Dang W, Tang H, Cao H, Wang L, Chen T (2013) Hydrazinocurcumin encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS One 8(6):e65896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rolny C, Mazzone M, Tugues S et al (2011) HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19:31–44

    Article  CAS  PubMed  Google Scholar 

  156. Guerriero JL (2018) Macrophages: the road less traveled, changing anticancer therapy. Trends Mol Med 24:472–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

LLS received an IDIBELL Fellowship. P. Muñoz’s laboratory is supported by the Spanish Ministry of Science and Innovation (SAF2017-84976R; co-funded by FEDER funds/European Regional Development Fund (ERDF) - a way to build Europe) and by the Catalan Department of Health (CERCA; Generalitat de Catalunya, 2017/SGR565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purificación Muñoz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzo-Sanz, L., Muñoz, P. Tumor-Infiltrating Immunosuppressive Cells in Cancer-Cell Plasticity, Tumor Progression and Therapy Response. Cancer Microenvironment 12, 119–132 (2019). https://doi.org/10.1007/s12307-019-00232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-019-00232-2

Keywords

Navigation