Skip to main content

Advertisement

Log in

IRF-2 is over-expressed in pancreatic cancer and promotes the growth of pancreatic cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Pancreatic cancer is one of the most malignant diseases in the world. Interferon regulator factor 2 (IRF-2), an interferon regulatory factor, has been known to act as an oncogene in distinct types of cancer. In this study, we found that the expression of IRF-2 was up-regulated in primary pancreatic cancer samples and associated with tumor size, differentiation, tumor–node–metastasis stage, and survival of the patients. In pancreatic cancer cells, knockdown on the expression of IRF-2 inhibited cell growth in the liquid culture and on the soft agar. Mechanistically, IRF-2 modulated the growth of pancreatic cancer cells through regulating proliferation and apoptosis effectors, such as cyclin D1 and BAX. Collectively, these results suggest that IRF-2 plays an important role in the tumorigenesis of pancreatic cancer and down-regulation of IRF-2 would be a new treatment target for pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. N Engl J Med. 1992;316:455–65.

    Article  Google Scholar 

  2. Hidalgo M. Pancreatic cancer. N Engl J Med. 1992;362:1605–17.

    Article  Google Scholar 

  3. Maiello E. A phase II trial of etoposide, folinic acid, fluorouracil and epirubicin in advanced pancreatic carcinoma. Clin Ter. 1998;149:351–5.

    PubMed  CAS  Google Scholar 

  4. Holzman DC. Pancreatic cancer: will incremental advances begin to make a difference? J Natl Cancer Inst. 1996;102:1821–3.

    Google Scholar 

  5. Costello E, Neoptolemos JP. Pancreatic cancer in 2010: new insights for early intervention and detection. Nat Rev Gastroenterol Hepatol. 2010;8:71–3.

    Article  Google Scholar 

  6. Milandri C, et al. Intra-arterial chemotherapy of advanced pancreatic cancer: a single center experience. Hepatogastroenterology. 2007;54:2373–7.

    PubMed  CAS  Google Scholar 

  7. Hruban RH, et al. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6:2969–72.

    PubMed  CAS  Google Scholar 

  8. Garcea G, et al. Molecular prognostic markers in pancreatic cancer: a systematic review. Eur J Cancern. 2005;41:2213–36.

    Article  CAS  Google Scholar 

  9. Saif MW, Karapanagiotou L, Syrigos K. Genetic alterations in pancreatic cancer. World J Gastroenterol. 2007;13:4423–30.

    PubMed  CAS  Google Scholar 

  10. Ghiorzo P, et al. INK4/ARF germline alterations in pancreatic cancer patients. Ann Oncol. 2004;15:70–8.

    Article  PubMed  CAS  Google Scholar 

  11. Naccarati A, et al. Genotype and haplotype analysis of TP53 gene and the risk of pancreatic cancer: an association study in the Czech Republic. Carcinogenesis. 2009;30:666–70.

    Google Scholar 

  12. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  13. Harada H, Taniguchi T, Tanaka N. The role of interferon regulatory factors in the interferon system and cell growth control. Biochimie. 1998;80:641–50.

    Article  PubMed  CAS  Google Scholar 

  14. Watanabe N, Taniguchi T. Involvement of positive (IRF-1) and negative (IRF-2) transcription factors in the gene regulation of the type I interferon system. Tanpakushitsu Kakusan Koso. 1992;37:2813–22.

    PubMed  CAS  Google Scholar 

  15. Nguyen H, Hiscott J, Pitha PM. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev. 1997;8:293–302.

    Article  PubMed  CAS  Google Scholar 

  16. Harada H, et al. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2. Science. 1993;259:971–4.

    Article  PubMed  CAS  Google Scholar 

  17. Xi H, et al. Co-occupancy of the interferon regulatory element of the class II transactivator (CIITA) type IV promoter by interferon regulatory factors 1 and 2. Oncogene. 1999;18:5889–903.

    Article  PubMed  CAS  Google Scholar 

  18. Lengyel P. Tumor-suppressor genes: news about the interferon connection. Proc Natl Acad Sci USA. 1993;90:5893–5.

    Article  PubMed  CAS  Google Scholar 

  19. Taniguchi T. Transcription factors IRF-1 and IRF-2: linking the immune responses and tumor suppression. J Cell Physiol. 1997;173:128–30.

    Article  PubMed  CAS  Google Scholar 

  20. Choo A, et al. siRNA targeting the IRF-2 transcription factor inhibits leukaemic cell growth. Int J Oncol. 2008;32:175–83.

    Google Scholar 

  21. Choo A, et al. The role of IRF-1 and IRF-2 transcription factors in leukaemogenesis. Curr Gene Ther. 2006;6:543–50.

    Article  PubMed  CAS  Google Scholar 

  22. Doherty GM, et al. Interferon regulatory factor expression in human breast cancer. Ann Surg. 2001;232:623–9.

    Article  Google Scholar 

  23. Connett JM, et al. Interferon regulatory factor 1 (IRF-1) and IRF-2 expression in breast cancer tissue microarrays. J Interferon Cytokine Res. 2005;25:587–94.

    Article  PubMed  CAS  Google Scholar 

  24. Nicolini A, Carpi A, Rossi G. Cytokines in breast cancer. Cytokine Growth Factor Rev. 2006;17:315–37.

    Article  Google Scholar 

  25. Wang Y, et al. Negative feedback regulation of IFN-gamma pathway by IFN regulatory factor 2 in esophageal cancers. Cancer Res. 2008;68:1136–43.

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y, et al. Involvement of IFN regulatory factor (IRF)-1 and IRF-2 in the formation and progression of human esophageal cancers. Cancer Res. 2007;67:2535–43.

    Article  PubMed  CAS  Google Scholar 

  27. Xi H, Blanck G. Interferon regulatory factor-2 point mutations in human pancreatic tumors. Int J Cancer. 2000;87:803–8.

    Article  PubMed  CAS  Google Scholar 

  28. Kim JK, Diehl JA. Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol. 2009;220:292–6.

    Article  PubMed  CAS  Google Scholar 

  29. Stanger BZ, Dor Y. Dissecting the cellular origins of pancreatic cancer. Cell Cycle. 2006;5:43–6.

    Article  PubMed  CAS  Google Scholar 

  30. Chung DC. Cyclin D1 in human neuroendocrine: tumorigenesis. Ann NY Acad Sci. 2004;1014:209–17.

    Article  PubMed  CAS  Google Scholar 

  31. Gao J, et al. IRF-1 transcriptionally up-regulates PUMA which mediates the mitochondrial apoptotic pathway in IRF-1 induced apoptosis in cancer cells. Cell Death Differ. 2010;17:699–709.

    Article  PubMed  CAS  Google Scholar 

  32. Kim EJ, et al. Interferon regulatory factor-1 mediates interferon-gamma-induced apoptosis in ovarian carcinoma cells. J Cell Biochem. 2002;85:369–80.

    Article  PubMed  CAS  Google Scholar 

  33. Hamacher R, et al. Apoptotic pathways in pancreatic ductal adenocarcinoma. Mol Cancer. 2008;7:64.

    Article  PubMed  Google Scholar 

  34. Westphal S, Kalthoff H. Apoptosis: targets in pancreatic cancer. Mol Cancer. 2003;2:6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the scholarship of SA-SIBS. This project is supported by China Postdoctoral Science Foundation (20100480636) to Yuezhen Deng.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayong Jin.

Additional information

Lei Cui, Yuezhen Deng, and Yefei Rong contribute equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Knockdown on the expression of IRF-2 did not affect cell migration. A Si con, si 1#, and si 2# MIAPaCa-2 cells were tested with the Boyden Chamber assay. After 15 h, cells that migrated through the filter membrane of the Boyden chamber were stained, and representative results are shown in the upper panel. B Quantification of migratory cells was analyzed with Image Pro software and is shown in the basal panel. (JPEG 85 kb)

High resolution image (TIFF 25505 kb)

Fig. S2

Down-regulation of IRF-1 and IRF-3 in pancreatic cancer. A Relative expression of IRF-1 mRNA in 30 pancreatic cancer tissues compared to the paired normal tissues. B Relative expression of IRF-3 mRNA in 30 pancreatic cancer tissues compared to the paired normal tissues. (JPEG 37 kb)

High resolution image (TIFF 14208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, L., Deng, Y., Rong, Y. et al. IRF-2 is over-expressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumor Biol. 33, 247–255 (2012). https://doi.org/10.1007/s13277-011-0273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0273-3

Keywords

Navigation