Skip to main content

Advertisement

Log in

HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism

  • Original Article
  • Published:
Tumor Biology

Abstract

The monocyte-macrophage lineage shows a high degree of diversity and plasticity. Once they infiltrate tissues, they may acquire two main functional phenotypes, being known as the classically activated type 1 macrophages (M1) and the alternative activated type 2 macrophages (M2). The M1 phenotype can be induced by bacterial products and interferon-γ and exerts a cytotoxic effect on cancer cells. Conversely, the alternatively activated M2 phenotype is induced by Il-4/IL13 and promotes tumor cell growth and vascularization. Although receptor for advanced glycation end-products (RAGE) engagement in M1 macrophages has been reported by several groups to promote inflammation, nothing is known about the functionality of RAGE in M2 macrophages. In the current study, we demonstrate that RAGE is equally expressed in both macrophage phenotypes and that RAGE activation by high-mobility group protein box1 (HMGB1) promotes protumoral activities of M2 macrophages. MKN45 cells co-cultured with M2 macrophages treated with HMGB1 at different times displayed higher invasive abilities. Additionally, conditioned medium from HMGB1-treated M2 macrophages promotes angiogenesis in vitro. RAGE-targeting knockdown abrogates these activities. Overall, the present findings suggest that HMGB1 may contribute, by a RAGE-dependent mechanism, to the protumoral activities of the M2 phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mantovani A, Sica A, Allavena P, Garlanda C, Locati M. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol. 2009;70:325–30.

    Article  CAS  PubMed  Google Scholar 

  2. Mantovani A, Germano G, Marchesi F, Locatelli M, Biswas SK. Cancer-promoting tumor-associated macrophages: new vistas and open questions. Eur J Immunol. 2011;41:2522–5.

    Article  CAS  PubMed  Google Scholar 

  3. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    Article  CAS  PubMed  Google Scholar 

  4. Biswas SK, Allavena P, Mantovani A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol. 2013;35:585–600.

    Article  CAS  PubMed  Google Scholar 

  5. Eljaszewicz A, Wiese M, Helmin-Basa A, Jankowski M, Gackowska L, Kubiszewska I, et al. Collaborating with the enemy: function of macrophages in the development of neoplastic disease. Mediat Inflamm. 2013;831387.

  6. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol. 2013;228:1404–12.

    Article  CAS  PubMed  Google Scholar 

  7. Hao NB, Lü MH, Fan YH, Cao YL, Zhang ZR, Yang SM. Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. 2012;2012:948098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rojas A, Figueroa H, Morales E. Fueling inflammation at tumor microenvironment: the role of multiligand/RAGE axis. Carcinogenesis. 2010;31:334–41.

    Article  CAS  PubMed  Google Scholar 

  9. Logsdon CD, Fuentes MK, Huang EH, Arumugam T. RAGE and RAGE ligands in cancer. Curr Mol Med. 2007;7:777–89.

    Article  CAS  PubMed  Google Scholar 

  10. Rojas A, Caveda L, Romay C, López E, Valdés S, Padrón JL, et al. Effect of advanced glycosylation end products on the induction of nitric oxide synthase in murine macrophages. Biochem Biophys Res Commun. 1996;225:358–62.

    Article  CAS  PubMed  Google Scholar 

  11. Wautier MP, Chappey O, Corda S, et al. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001;280:E685–94.

    CAS  PubMed  Google Scholar 

  12. Wu CH, Huang CM, Lin CH, et al. Advanced glycosylation end products induce NF-kappaB dependent iNOS expression in RAW 264.7 cells. Mol Cell Endocrinol. 2002;194:9–17.

    Article  CAS  PubMed  Google Scholar 

  13. Rashid G, Korzets Z, Bernheim J. Advanced glycation end products stimulate tumor necrosis factor-alpha and interleukin-1 beta secretion by peritoneal macrophages in patients on continuous ambulatory peritoneal dialysis. Isr Med Assoc J. 2006;8:36–9.

    CAS  PubMed  Google Scholar 

  14. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177:7303–11.

    Article  CAS  PubMed  Google Scholar 

  15. Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, Krebs W, et al. High-resolution transcriptome of human macrophages. PLoS One. 2012;7, e45466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuniyasu H, Oue N, Wakikawa A, Shigeishi H, Matsutani N, Kuraoka K, et al. Expression of receptors for advanced glycation end-products (RAGE) is closely associated with the invasive and metastatic activity of gastric cancer. J Pathol. 2002;196:163–70.

    Article  CAS  PubMed  Google Scholar 

  17. Kumar P, Raghavan S, Shanmugam G, Shanmugam N. Ligation of RAGE with ligand S100B attenuates ABCA1 expression in monocytes. Metabolism. 2013;62:1149–58.

    Article  CAS  PubMed  Google Scholar 

  18. Xu Y, Toure F, Qu W, Lin L, Song F, Shen X, et al. Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. J Biol Chem. 2010;285:23233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tjiu J-W, Chen J-S, Shun C-T, Lin S-J, Liao Y-H, Chu C-Y, et al. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol. 2009;129:1016–25.

    Article  CAS  PubMed  Google Scholar 

  20. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28:367–88.

    Article  CAS  PubMed  Google Scholar 

  21. Kong LY, Wu AS, Doucette T, Wei J, Priebe W, Fuller GN, et al. Intratumoral mediated immunosuppression is prognostic in genetically engineered murine models of glioma and correlates to immunotherapeutic responses. Clin Cancer Res. 2010;16:5722–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev. 2007;220:35–46.

    Article  CAS  PubMed  Google Scholar 

  23. Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A, et al. Masquerader: high mobility group box-1 and cancer. Clin Cancer Res. 2007;13:2836–48.

    Article  CAS  PubMed  Google Scholar 

  24. Andersson UG, Tracey KJ. HMGB1, a pro-inflammatory cytokine of clinical interest: introduction. J Intern Med. 2004;255:318–9.

    Article  CAS  PubMed  Google Scholar 

  25. Palumbo R, Bianchi ME. High mobility group box 1 protein, a cue for stem cell recruitment. Biochem Pharmacol. 2004;68:1165–70.

    Article  CAS  PubMed  Google Scholar 

  26. Tang D, Kang R, Zeh III HJ, Lotze MT. High-mobility group box 1 and cancer. Biochim Biophys Acta. 2010;1799:131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Inoue K, Kawahara K, Biswas KK, Ando K, Mitsudo K, Nobuyoshi M, et al. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovasc Pathol. 2007;16:136–43.

    Article  CAS  PubMed  Google Scholar 

  28. Schroeder JA, Adriance MC, Thompson MC, Camenisch TD, Gendler SJ. MUC1 alters beta-catenin-dependent tumor formation and promotes cellular invasion. Oncogene. 2003;22:1324–32.

    Article  CAS  PubMed  Google Scholar 

  29. Gao J, McConnell MJ, Yu B, Li J, Balko JM, et al. MUC1 is a downstream target of STAT3 and regulates lung cancer cell survival and invasion. Int J Oncol. 2009;35:337–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006;25:315–22.

    Article  PubMed  Google Scholar 

  31. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618–31.

    Article  CAS  PubMed  Google Scholar 

  32. Hudson BI, Stickland MH. Grant PJ Identification of polymorphisms in the receptor for advanced glycation end products (RAGE) gene: prevalence in type 2 diabetes and ethnic groups. Diabetes. 1998;47:1155–7.

    Article  CAS  PubMed  Google Scholar 

  33. Alexiou P, Chatzopoulou M, Pegklidou K, Demopoulos VJ. RAGE: a multi-ligand receptor unveiling novel insights in health and disease. Curr Med Chem. 2010;17:2232–52.

    Article  CAS  PubMed  Google Scholar 

  34. Nogueira-Machado JA, Volpe CM, Veloso CA. Chaves MM.HMGB1, TLR and RAGE: a functional tripod that leads to diabetic inflammation. Expert Opin Ther Targets. 2011;15:1023–35.

    Article  CAS  PubMed  Google Scholar 

  35. Armour CL, Phipps S, Sukkar MB. AGE and TLRs: relatives, friends or neighbours? Mol Immunol. 2013;56:739–44.

    Article  CAS  PubMed  Google Scholar 

  36. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5:331–42.

    Article  CAS  PubMed  Google Scholar 

  37. Whyte CS, Bishop ET, Rückerl D, Gaspar-Pereira S, Barker RN, Allen JE, et al. Suppressor of cytokine signaling SOCS1 is a key determinant of differential macrophage activation and function. J Leukoc Biol. 2011;90:845–54.

    Article  CAS  PubMed  Google Scholar 

  38. Sly LM, Rauh MJ, Kalesnikoff J, Song CH, Krystal G. LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity. 2004;21:227–39.

    Article  CAS  PubMed  Google Scholar 

  39. Sakaguchi M, Murata H, Yamamoto K-I, Ono T, Sakaguchi Y, et al. TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS ONE. 2011;6, e23132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang R, Zhang Q, Zeh 3rd HJ, Lotze MT, Tang D. HMGB1 in cancer: good, bad, or both? Clin Cancer Res. 2013;19:4046–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang S, Xu L, Yang T, Wang F. High-mobility group box-1 and its role in angiogenesis. J Leukoc Biol. 2014;95:563–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant 1130337 from Programa Fondecyt, Comisión Nacional de Ciencia y Teconología, Chile.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Rojas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, A., Delgado-López, F., Perez-Castro, R. et al. HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumor Biol. 37, 3321–3329 (2016). https://doi.org/10.1007/s13277-015-3940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3940-y

Keywords

Navigation