Skip to main content
Log in

Matrix metalloproteinase inhibitors (MMPIs): The beginning of phase I or the termination of phase III clinical trials

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The decade of the 1990s was ripe with enthusiasm for the use of MMPIs to treat cancer. Limitations to new cytotoxic chemotherapy approaches to treat solid cancers and a better understanding of tumor biology provided a strong impetus for alternative drug development. It is estimated that the pharmaceutical industry invested at least a billion dollars in this effort. Because MMPIs represent an entirely different therapeutic modality from proven anti-cancer agents, many of the therapeutic trials designed to test MMPIs in human patients with cancer bypassed traditional approaches to evaluate drug efficiency. The concept of systematic progression from small phase I (dose escalation to toxicity to examine drug safety), to phase II (drug treatment of patients with cancer types considered to be good candidates for the selected drug), to phase III (randomized trial of new drug versus best available therapy to determine drug efficacy) trials was modified. Much to the chagrin of everyone involved in these studies, the randomized trials of MMPIs in advanced cancer have, pretty much, flopped. This review article will attempt to dissect out aspects of previous human and animal studies that may be helpful in making decisions about the future of MMPI drug development for the treatment of cancer. The important questions to be addressed in this report are: What are the lessons that we have learned from preclinical (animal models) and clinical studies of MMPIs in cancer? Are we ready to abandon MMPIs as a therapeutic modality in cancer (termination of phase III trials) or do we need to have a better understanding of the myriad effects of MMPs in cancer before we proceed to develop different types of drugs that alter MMP activity in patients with cancer (beginning of new phase I trials)?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Giannelli G, Antonaci S: Gelatinases and their inhibitors in tumor metastasis: From biological research to medical applications. Histol Histopathol 17: 339–345, 2002

    Google Scholar 

  2. McCullagh K, Wadsworth H,Hann M: Carboxyakyl peptide derivatives. European Patent Application EU126,974, 1–111, 1984

    Google Scholar 

  3. Egeblad M,Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161–174, 2002

    Google Scholar 

  4. Stamenkovic I: Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 10: 415–433, 2000

    Google Scholar 

  5. Coussens LM,Fingleton B,Matrisian LM: Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science 295: 2387–2392, 2002

    Google Scholar 

  6. Overall CM,Lopez-Otin C: Strategies for mmp inhibition in cancer: Innovations for the post-trial era. Nat Rev Cancer 2: 657–672, 2002

    Google Scholar 

  7. Zucker S,Cao J,Chen WT: Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19: 6642–6650, 2000

    Google Scholar 

  8. Hidalgo M,Eckhardt SG: Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 93: 178–193, 2001

    Google Scholar 

  9. Sternlicht MD,Werb Z: How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17: 463–516, 2001

    Google Scholar 

  10. Baker AH,Edwards DR,Murphy G: Metalloproteinase inhibitors: Biological actions and therapeutic opportunities. J Cell Sci 115: 3719–3727, 2002

    Google Scholar 

  11. Nelson AR,Fingleton B,Rothenberg ML,Matrisian LM: Matrix metalloproteinases: Biologic activity and clinical implications. J Clin Oncol 18: 1135–1149, 2000

    Google Scholar 

  12. Stetler-Stevenson WG,Liotta LA,Kleiner DE, Jr: Extracellular matrix 6: Role of matrix metalloproteinases in tumor invasion and metastasis. Faseb J 7: 1434–1441, 1993

    Google Scholar 

  13. Birkedal-Hansen H,Moore WG,Bodden MK,Windsor LJ,Birkedal-Hansen B,DeCarlo A,Engler JA: Matrix metalloproteinases: A review. Crit Rev Oral Biol Med 4: 197–250, 1993

    Google Scholar 

  14. Nagase H,Woessner JF, Jr: Matrix metalloproteinases. J Biol Chem 274: 21491–21494, 1999

    Google Scholar 

  15. Stocker W,Bode W: Structural features of a superfamily of zinc-endopeptidases: The metzincins. Curr Opin Struct Biol 5: 383–390, 1995

    Google Scholar 

  16. Zucker S,Cao J,Molloy CM: Role of matrix metalloproteinases and plasminogen activators in cancer invasion and metastasis: Therapeutic strategies. In Baguley BC, Matrix metalloproteinase inhibitors (MMPIs) 195 Kerr DJ (eds), Anticancer Development. Academic Press, San Diego, CA, 2002, pp 91–122

    Google Scholar 

  17. Cao J,Drews M,Lee HM,Conner C,Bahou WF,Zucker S: The propeptide domain of membrane type 1 matrix metalloproteinase is required for binding of tissue inhibitor of metalloproteinases and for activation of progelatinase A. J Biol Chem 273: 34745–34752, 1998

    Google Scholar 

  18. Sato H,Takino T,Okada Y,Cao J,Shinagawa A,Yamamoto E,Seiki M: A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 370: 61–65, 1994

    Google Scholar 

  19. Ogata Y,Enghild JJ,Nagase H: Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem 267: 3581–3584, 1992

    Google Scholar 

  20. Murphy G,Willenbrock F: Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol 248: 496–510, 1995

    Google Scholar 

  21. Takahashi C,Sheng Z,Horan TP,Kitayama H,Maki M,Hitomi K,Kitaura Y,Takai S,Sasahara RM,Horimoto A,Ikawa Y,Ratzkin BJ,Arakawa T,Noda M: Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci USA 95: 13221–13226, 1998

    Google Scholar 

  22. Baker EA,Bergin FG,Leaper DJ: Matrix metalloproteinases, their tissue inhibitors and colorectal cancer staging. Br J Surg 87: 1215–1221, 2000

    Google Scholar 

  23. Brown PD,Levy AT,Margulies IM,Liotta LA,Stetler-Stevenson WG: Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines. Cancer Res 50: 6184–6191, 1990

    Google Scholar 

  24. Stetler-Stevenson WG,Hewitt R,Corcoran M: Matrix metalloproteinases and tumor invasion: From correlation and causality to the clinic. Semin Cancer Biol 7: 147–154, 1996

    Google Scholar 

  25. van den Oord JJ,Paemen L,Opdenakker G,de Wolf-Peeters C: Expression of gelatinase B and the extracellular matrix metalloproteinase inducer EMMPRIN in benign and malignant pigment cell lesions of the skin. Am J Pathol 151: 665–670, 1997

    Google Scholar 

  26. Galateau-Salle FB,Luna RE,Horiba K,Sheppard MN,Hayashi T,Fleming MV,Colby TV,Bennett W,Harris CC,Stetler-Stevenson WG,Liotta L,Ferrans VJ,Travis WD: Matrix metalloproteinases and tissue inhibitors of metalloproteinases in bronchial squamous preinvasive lesions. Hum Pathol 31: 296–305, 2000

    Google Scholar 

  27. Cockett MI,Murphy G,Birch ML,O'Connell JP,Crabbe T,Millican AT,Hart IR,Docherty AJ: Matrix metalloproteinases and metastatic cancer. Biochem Soc Symp 63: 295–313, 1998

    Google Scholar 

  28. Bernhard EJ,Gruber SB,Muschel RJ: Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci USA 91: 4293–4297, 1994

    Google Scholar 

  29. Kawamata H,Kameyama S,Kawai K,Tanaka Y,Nan L,Barch DH,Stetler-Stevenson WG,Oyasu R: Marked acceleration of the metastatic phenotype of a rat bladder carcinoma cell line by the expression of human gelatinase A. Int J Cancer 63: 568–575, 1995

    Google Scholar 

  30. Tsunezuka Y,Kinoh H,Takino T,Watanabe Y,Okada Y,Shinagawa A,Sato H,Seiki M: Expression of membrane-type matrix metalloproteinase 1 (MT1-MMP) in tumor cells enhances pulmonary metastasis in an experimental metastasis assay. Cancer Res 56: 5678–5683, 1996

    Google Scholar 

  31. Miyake H,Hara I,Gohji K,Yamanaka K,Hara S,Arakawa S,Nakajima M,Kamidono S: Relative expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in mouse renal cell carcinoma cells regulates their metastatic potential. Clin Cancer Res 5: 2824–2829, 1999

    Google Scholar 

  32. Powell WC,Knox JD,Navre M,Grogan TM,Kittelson J,Nagle RB,Bowden GT: Expression of the metalloproteinase matrilysin in DU-145 cells increases their invasive potential in severe combined immunodeficient mice. Cancer Res 53: 417–422, 1993

    Google Scholar 

  33. Khokha R,Waterhouse P,Yagel S,Lala PK,Overall CM,Norton G,Denhardt DT: Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells. Science 243: 947–950, 1989

    Google Scholar 

  34. Hua J,Muschel RJ: Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res 56: 5279–5284, 1996

    Google Scholar 

  35. Wang M,Liu YE,Greene J,Sheng S,Fuchs A,Rosen EM,Shi YE: Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4. Oncogene 14: 2767–2774, 1997

    Google Scholar 

  36. Khokha R: Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. J Natl Cancer Inst 86: 299–304, 1994

    Google Scholar 

  37. Watanabe M,Takahashi Y,Ohta T,Mai M,Sasaki T,Seiki M: Inhibition of metastasis in human gastric cancer cells transfected with tissue inhibitor of metalloproteinase 1 gene in nude mice. Cancer 77: 1676–1680, 1996

    Google Scholar 

  38. Kupferman ME,Fini ME,Muller WJ,Weber R,Cheng Y,Muschel RJ: Matrix metalloproteinase 9 promoter activity is induced coincident with invasion during tumor progression. Am J Pathol 157: 1777–1783, 2000

    Google Scholar 

  39. D'Armiento J,DiColandrea T,Dalal SS,Okada Y,Huang MT,Conney AH,Chada K: Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis. Mol Cell Biol 15: 5732–5739, 1995

    Google Scholar 

  40. Colandrea TD,D'Armiento J,Kesari KV,Chada KK: Collagenase induction promotes mouse tumorigenesis by two independent pathways. Mol Carcinog 29: 8–16, 2000

    Google Scholar 

  41. Rudolph-Owen LA,Chan R,Muller WJ,Matrisian LM: The matrix metalloproteinase matrilysin influences earlystage mammary tumorigenesis. Cancer Res 58: 5500–5506, 1998

    Google Scholar 

  42. Sternlicht MD,Lochter A,Sympson CJ,Huey B,Rougier JP,Gray JW,Pinkel D,Bissell MJ,Werb Z: The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98: 137–146, 1999

    Google Scholar 

  43. Sternlicht MD,Bissell MJ,Werb Z: The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene 19: 1102–1113, 2000

    Google Scholar 

  44. Ha HY,Moon HB,Nam MS,Lee JW,Ryoo ZY,Lee TH,Lee KK,So BJ,Sato H,Seiki M,Yu DY: Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res 61: 984–990, 2001

    Google Scholar 

  45. Wilson CL,Heppner KJ,Labosky PA,Hogan BL,Matrisian LM: Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci USA 94: 1402–1407, 1997

    Google Scholar 

  46. Masson R,Lefebvre O,Noel A,Fahime ME,Chenard MP,Wendling C,Kebers F,LeMeur M,Dierich A,Foidart JM,Basset P,Rio MC: In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 140: 1535–1541, 1998

    Google Scholar 

  47. Kruger A,Sanchez-Sweatman OH,Martin DC,Fata JE,Ho AT,Orr FW,Ruther U,Khokha R: Host TIMP-1 overexpression confers resistance to experimental brain metastasis of a fibrosarcoma cell line. Oncogene 16: 2419–2423, 1998

    Google Scholar 

  48. Martin DC,Ruther U,Sanchez-Sweatman OH,Orr FW,Khokha R: Inhibition of SV40 T antigen-induced hepatocellular carcinoma in TIMP-1 transgenic mice. Oncogene 13: 569–576, 1996

    Google Scholar 

  49. Kruger A,Fata JE,Khokha R: Altered tumor growth and metastasis of a T-cell lymphoma in Timp-1 transgenic mice. Blood 90: 1993–2000, 1997

    Google Scholar 

  50. Liotta LA: Cancer cell invasion and metastasis. Sci Am 266: 54–59, 62–63, 1992

    Google Scholar 

  51. Nicolson GL: Tumor and host molecules important in the organ preference of metastasis. Semin Cancer Biol 2: 143–154, 1991

    Google Scholar 

  52. Basset P,Bellocq JP,Wolf C,Stoll I,Hutin P,Limacher JM,Podhajcer OL,Chenard MP,Rio MC,Chambon P: A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348: 699–704, 1990

    Google Scholar 

  53. Yu Q,Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14: 163–176, 2000

    Google Scholar 

  54. Olson MW,Toth M,Gervasi DC,Sado Y,Ninomiya Y,Fridman R: High affinity binding of latent matrix metalloproteinase-9 to the alpha2(IV) chain of collagen IV. J Biol Chem 273: 10672–10681, 1998

    Google Scholar 

  55. Brooks PC,Stromblad S,Sanders LC,von Schalscha TL,Aimes RT,Stetler-Stevenson WG,Quigley JP,Cheresh DA: Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85: 683–693, 1996

    Google Scholar 

  56. Biswas C,Zhang Y,DeCastro R,Guo H,Nakamura T,Kataoka H,Nabeshima K: The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 55: 434–539, 1995

    Google Scholar 

  57. Polette M,Gilles C,Marchand V,Lorenzato M,Toole B,Tournier JM,Zucker S,Birembaut P: Tumor collagenase stimulatory factor (TCSF) expression and localization in human lung and breast cancers. J Histochem Cytochem 45: 703–709, 1997

    Google Scholar 

  58. Guo H,Li R,Zucker S,Toole BP: EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res 60: 888–891, 2000

    Google Scholar 

  59. Polette M,Gilbert N,Stas I,Nawrocki B,Noel A,Remacle A,Stetler-Stevenson WG,Birembaut P,Foidart M: Gelatinase A expression and localization in human breast cancers. An in situ hybridization study and immunohistochemical detection using confocal microscopy. Virchows Arch 424: 641–645, 1994

    Google Scholar 

  60. Soini Y,Hurskainen T,Hoyhtya M,Oikarinen A,Autio-Harmainen H: 72 KD and 92 KD type IV collagenase, type IV collagen, and laminin mRNAs in breast cancer: A study by in situ hybridization. J Histochem Cytochem 42: 945–951, 1994

    Google Scholar 

  61. Davies B,Miles DW,Happerfield LC,Naylor MS,Bobrow LG,Rubens RD,Balkwill FR: Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer 67: 1126–1131, 1993

    Google Scholar 

  62. Okada A,Bellocq JP,Rouyer N,Chenard MP,Rio MC,Chambon P,Basset P: Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci USA 92: 2730–2734, 1995

    Google Scholar 

  63. Heppner KJ,Matrisian LM,Jensen RA,Rodgers WH: Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol 149: 273–282, 1996

    Google Scholar 

  64. Dalberg K,Eriksson E,Enberg U,Kjellman M,Backdahl M: Gelatinase A, membrane type 1 matrix metalloproteinase, and extracellular matrix metalloproteinase inducer mRNA expression: Correlation with invasive growth of breast cancer. World J Surg 24: 334–340, 2000

    Google Scholar 

  65. Nielsen BS,Sehested M,Kjeldsen L,Borregaard N,Rygaard J,Dano K: Expression of matrix metalloprotease-9 in vascular pericytes in human breast cancer. Lab Invest 77: 345–355, 1997

    Google Scholar 

  66. Tetu B,Brisson J,Lapointe H,Bernard P: Prognostic significance of stromelysin 3, gelatinase A, and urokinase expression in breast cancer. Hum Pathol 29: 979–985, 1998

    Google Scholar 

  67. Engel G,Heselmeyer K,Auer G,Backdahl M,Eriksson E,Linder S: Correlation between stromelysin-3 mRNA level and outcome of human breast cancer. Int J Cancer 58: 830–835, 1994

    Google Scholar 

  68. Pacheco MM,Mourao M,Mantovani EB,Nishimoto IN,Brentani MM: Expression of gelatinases A and B, stromelysin-3 and matrilysin genes in breast carcinomas: Clinico-pathological correlations. Clin Exp Metastasis 16: 577–585, 1998

    Google Scholar 

  69. Holm R,Florenes VA,Erikstein B,Nesland JM: Expression of stromelysin-3 in medullary carcinoma of the breast. Anticancer Res 17: 3725–3727, 1997

    Google Scholar 

  70. Escot C,Zhao Y,Puech C,Rochefort H: Cellular localisation by in situ hybridisation of cathepsin D, Matrix metalloproteinase inhibitors (MMPIs) 197 stromelysin 3, and urokinase plasminogen activator RNAs in breast cancer. Breast Cancer Res Treat 38: 217–226, 1996

    Google Scholar 

  71. Ahmad A,Hanby A,Dublin E,Poulsom R,Smith P,Barnes D,Rubens R,Anglard P,Hart I: Stromelysin 3: An independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression. Am J Pathol 152: 721–728, 1998

    Google Scholar 

  72. Wolf C,Rouyer N,Lutz Y,Adida C,Loriot M,Bellocq JP,Chambon P,Basset P: Stromelysin 3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumor progression. Proc Natl Acad Sci USA 90: 1843–1847, 1993

    Google Scholar 

  73. Hoyhtya M,Fridman R,Komarek D,Porter-Jordan K,Stetler-Stevenson WG,Liotta LA,Liang CM: Immunohistochemical localization of matrix metalloproteinase 2 and its specific inhibitor TIMP-2 in neoplastic tissues with monoclonal antibodies. Int J Cancer 56: 500–505, 1994

    Google Scholar 

  74. Lebeau A,Nerlich AG,Sauer U,Lichtinghagen R,Lohrs U: Tissue distribution of major matrix metalloproteinases and their transcripts in human breast carcinomas. Anticancer Res 19: 4257–4264, 1999

    Google Scholar 

  75. Scorilas A,Karameris A,Arnogiannaki N,Ardavanis A,Bassilopoulos P,Trangas T,Talieri M: Overexpression of matrix-metalloproteinase-9 in human breast cancer: a potential favorable indicator in node-negative patients. Br J Cancer 84: 1488–1496, 2001

    Google Scholar 

  76. Jones JL,Glynn P,Walker RA: Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas. J Pathol 189: 161–168, 1999

    Google Scholar 

  77. Ueno H,Nakamura H,Inoue M,Imai K,Noguchi M,Sato H,Seiki M,Okada Y: Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res 57: 2055–2060, 1997

    Google Scholar 

  78. Nakopoulou L,Giannopoulou I,Gakiopoulou H,Liapis H,Tzonou A,Davaris PS: Matrix metalloproteinase-1 and-3 in breast cancer: Correlation with progesterone receptors and other clinicopathologic features. Hum Pathol 30: 436–442, 1999

    Google Scholar 

  79. Zucker S,Hymowitz M,Conner C,Zarrabi HM,Hurewitz AN,Matrisian L,Boyd D,Nicolson G,Montana S: Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications. Ann NY Acad Sci 878: 212–227, 1999

    Google Scholar 

  80. Bramhall SR,Neoptolemos JP,Stamp GW,Lemoine NR: Imbalance of expression of matrix metalloproteinases (MMPs) and tissue inhibitors of the matrix metalloproteinases (TIMPs) in human pancreatic carcinoma. J Pathol 182: 347–355, 1997

    Google Scholar 

  81. Yamamoto H,Itoh F,Iku S,Adachi Y,Fukushima H,Sasaki S,Mukaiya M,Hirata K,Imai K: Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human pancreatic adenocarcinomas: Clinicopathologic and prognostic significance of matrilysin expression. J Clin Oncol 19: 1118–1127, 2001

    Google Scholar 

  82. Ellenrieder V,Alber B,Lacher U,Hendler SF,Menke A,Boeck W,Wagner M,Wilda M,Friess H,Buchler M,Adler G,Gress TM: Role of MT-MMPs and MMP-2 in pancreatic cancer progression. Int J Cancer 85: 14–20, 2000

    Google Scholar 

  83. Iacobuzio-Donahue CA,Ryu B,Hruban RH,Kern SE: Exploring the host desmoplastic response to pancreatic carcinoma: Gene expression of stromal and neoplastic cells at the site of primary invasion. Am J Pathol 160: 91–99, 2002

    Google Scholar 

  84. Nagakawa Y, Aoki T,Kasuya K,Tsuchida A,Koyanagi Y: Histologic features of venous invasion, expression of vascular endothelial growth factor and matrix metalloproteinase-2 and matrix metalloproteinase-9, and the relation with liver metastasis in pancreatic cancer. Pancreas 24: 169–178, 2002

    Google Scholar 

  85. von Marschall Z,Riecken EO,Rosewicz S: Stromelysin 3 is overexpressed in human pancreatic carcinoma and regulated by retinoic acid in pancreatic carcinoma cell lines. Gut 43: 692–698, 1998

    Google Scholar 

  86. Gress TM,Muller-Pillasch F,Lerch MM,Friess H,Buchler M,Adler G: Expression and in-situ localization of genes coding for extracellular matrix proteins and extracellular matrix degrading proteases in pancreatic cancer. Int J Cancer 62: 407–413, 1995

    Google Scholar 

  87. Balaz P,Friess H,Kondo Y,Zhu Z,Zimmermann A,Buchler MW: Human macrophage metalloelastase worsens the prognosis of pancreatic cancer. Ann Surg 235: 519–527, 2002

    Google Scholar 

  88. Itoh T,Tanioka M,Yoshida H,Yoshioka T,Nishimoto H,Itohara S: Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58: 1048–1051, 1998

    Google Scholar 

  89. Itoh T,Tanioka M,Matsuda H,Nishimoto H,Yoshioka T,Suzuki R,Uehira M: Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17: 177–181, 1999

    Google Scholar 

  90. Coussens LM,Tinkle CL,Hanahan D,Werb Z: MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103: 481–490, 2000

    Google Scholar 

  91. Boulay A,Masson R,Chenard MP,El Fahime M,Cassard L,Bellocq JP,Sautes-Fridman C,Basset P,Rio MC: High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res 61: 2189–2193, 2001

    Google Scholar 

  92. Zucker S: Experimental models to identify antimetastatic drugs: Are we there yet? A position paper. Ann NY Acad Sci 878: 208–211, 1999

    Google Scholar 

  93. Desrochers PE,Jeffrey JJ,Weiss SJ: Interstitial collagenase (matrix metalloproteinase-1) expresses serpinase activity. J Clin Invest 87: 2258–2265, 1991

    Google Scholar 

  94. Whitelock JM,Murdoch AD,Iozzo RV,Underwood PA: The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271: 10079–10086, 1996

    Google Scholar 

  95. Imai K,Hiramatsu A,Fukushima D,Pierschbacher MD,Okada Y: Degradation of decorin by matrix metalloproteinases: Identification of the cleavage sites, kinetic 198 Pavlaki and Zucker analyzes and transforming growth factor-beta1 release. Biochem J 322: 809–814, 1997

    Google Scholar 

  96. Yu WH,Woessner JF, Jr,McNeish JD,Stamenkovic I: CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 16: 307–323, 2002

    Google Scholar 

  97. Suzuki M,Raab G,Moses MA,Fernandez CA,Klagsbrun M: Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J Biol Chem 272: 31730–31737, 1997

    Google Scholar 

  98. Levi E,Fridman R,Miao HQ,Ma YS,Yayon A,Vlodavsky I: Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci U S A 93: 7069–7074, 1996

    Google Scholar 

  99. Sheu BC,Hsu SM,Ho HN,Lien HC,Huang SC,Lin RH: A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res 61: 237–242, 2001

    Google Scholar 

  100. von Bredow DC,Nagle RB,Bowden GT,Cress AE: Cleavage of beta 4 integrin by matrilysin. Exp Cell Res 236: 341–345, 1997

    Google Scholar 

  101. Giannelli G,Falk-Marzillier J,Schiraldi O,Stetler-Stevenson WG,Quaranta V: Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277: 225–228, 1997

    Google Scholar 

  102. Koshikawa N,Giannelli G,Cirulli V,Miyazaki K,Quaranta V: Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148: 615–624, 2000

    Google Scholar 

  103. Xu J,Rodriguez D,Petitclerc E,Kim JJ,Hangai M,Moon YS,Davis GE,Brooks PC,Yuen SM: Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154: 1069–1079, 2001

    Google Scholar 

  104. Montgomery AM,Reisfeld RA,Cheresh DA: Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci USA 91: 8856–8860, 1994

    Google Scholar 

  105. Akhurst RJ,Derynck R: TGF-beta signaling in cancer-a double-edged sword. Trends Cell Biol 11: S44-S51, 2001

    Google Scholar 

  106. Mu D,Cambier S,Fjellbirkeland L,Baron JL,Munger JS,Kawakatsu H,Sheppard D,Broaddus VC,Nishimura SL: The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol 157: 493–507, 2002

    Google Scholar 

  107. Mitsiades N, Yu WH,Poulaki V,Tsokos M,Stamenkovic I: Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 61: 577–581, 2001

    Google Scholar 

  108. Powell WC,Fingleton B,Wilson CL,Boothby M,Matrisian LM: The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol 9: 1441–1447, 1999

    Google Scholar 

  109. Gastman BR,Atarshi Y,Reichert TE,Saito T,Balkir L,Rabinowich H,Whiteside TL: Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes. Cancer Res 59: 5356–5364, 1999

    Google Scholar 

  110. Whiteside TL: Tumor-induced death of immune cells: Its mechanisms and consequences. Semin Cancer Biol 12: 43–50, 2002

    Google Scholar 

  111. Schneider P,Holler N,Bodmer JL,Hahne M,Frei K,Fontana A,Tschopp J: Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187: 1205–1213, 1998

    Google Scholar 

  112. Hohlbaum AM,Moe S,Marshak-Rothstein A: Opposing effects of transmembrane and soluble Fas ligand expression on inflammation and tumor cell survival. J Exp Med 191: 1209–1220, 2000

    Google Scholar 

  113. Bergers G,Brekken R,McMahon G,Vu TH,Itoh T,Tamaki K,Tanzawa K,Thorpe P,Itohara S,Werb Z,Hanahan D: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737–744, 2000

    Google Scholar 

  114. Deryugina EI,Soroceanu L,Strongin AY: Up-regulation of vascular endothelial growth factor by membrane-type 1 matrix metalloproteinase stimulates human glioma xenograft growth and angiogenesis. Cancer Res 62: 580–588, 2002

    Google Scholar 

  115. Sounni NE,Devy L,Hajitou A,Frankenne F,Munaut C,Gilles C,Deroanne C,Thompson EW,Foidart JM,Noel A: MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression. Faseb J 16: 555–564, 2002

    Google Scholar 

  116. Hiraoka N,Allen E,Apel IJ,Gyetko MR,Weiss SJ: Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95: 365–377, 1998

    Google Scholar 

  117. Patterson BC,Sang QA: Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/ type IV collagenase (MMP-9). J Biol Chem 272: 28823–28825, 1997

    Google Scholar 

  118. Cornelius LA,Nehring LC,Harding E,Bolanowski M,Welgus HG,Kobayashi DK,Pierce RA,Shapiro SD: Matrix metalloproteinases generate angiostatin: Effects on neovascularization. J Immunol 161: 6845–6852, 1998

    Google Scholar 

  119. Dong Z,Kumar R,Yang X,Fidler IJ: Macrophagederived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88: 801–810, 1997

    Google Scholar 

  120. Farina AR,Tacconelli A,Cappabianca L,Gulino A,Mackay AR: Inhibition of human MDA-MB-231 breast cancer cell invasion by matrix metalloproteinase 3 involves degradation of plasminogen. Eur J Biochem 269: 4476–4483, 2002

    Google Scholar 

  121. Lijnen HR,Ugwu F,Bini A,Collen D: Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 37: 4699–4702, 1998

    Google Scholar 

  122. Petitclerc E,Boutaud A,Prestayko A,Xu J,Sado Y,Ninomiya Y,Sarras MP, Jr,Hudson BG,Brooks PC: New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J Biol Chem 275: 8051–8061, 2000

    Google Scholar 

  123. Whittaker M,Floyd CD,Brown P,Gearing AJ: Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 99: 2735–2776, 1999

    Google Scholar 

  124. Lovejoy B,Welch AR,Carr S,Luong C,Broka C,Hendricks RT,Campbell JA,Walker KA,Martin R,Van Wart H,Browner MF: Crystal structures of MMP-1 and-13 reveal the structural basis for selectivity of collagenase inhibitors. Nat Struct Biol 6: 217–221, 1999

    Google Scholar 

  125. Brown PD,Whittaker M: Matrix metalloproteinase Inhibitors. In Teicher BA(ed.), Angiogenic Agents in Cancer Therapy. Totowa, New Jersey, Humana Press, 205–223, 1999

    Google Scholar 

  126. Shalinsky DR,Brekken J,Zou H,McDermott CD,Forsyth P,Edwards D,Margosiak S,Bender S,Truitt G,Wood A,Varki NM,Appelt K: Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann NY Acad Sci 878: 236–270, 1999

    Google Scholar 

  127. Li YC, Zhang X,Melton R,Ganu V,Gonnella NC: Solution structure of the catalytic domain of human stromelysin-1 complexed to a potent, nonpeptidic inhibitor. Biochemistry 37: 14048–14056, 1998

    Google Scholar 

  128. Babine RE,Bender SL: Molecular recognition of proteinminus signligand complexes: Applications to drug design. Chem Rev 97: 1359–1472, 1997

    Google Scholar 

  129. Grams F,Crimmin M,Hinnes L,Huxley P,Pieper M,Tschesche H,Bode W: Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry 34: 14012–14020, 1995

    Google Scholar 

  130. Gomis-Ruth FX,Maskos K,Betz M,Bergner A,Huber R,Suzuki K,Yoshida N,Nagase H,Brew K,Bourenkov GP,Bartunik H,Bode W: Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389: 77–81, 1997

    Google Scholar 

  131. Borkakoti N: Matrix metalloproteases: Variations on a theme. Prog Biophys Mol Biol 70: 73–94, 1998

    Google Scholar 

  132. Heath EI,Grochow LB: Clinical potential of matrix metalloprotease inhibitors in cancer therapy. Drugs 59: 1043–1055, 2000

    Google Scholar 

  133. Naglich JG,Jure-Kunkel M,Gupta E,Fargnoli J,Henderson AJ,Lewin AC,Talbott R,Baxter A,Bird J,Savopoulos R,Wills R,Kramer RA,Trail PA: Inhibition of angiogenesis and metastasis in two murine models by the matrix metalloproteinase inhibitor, BMS-275291. Cancer Res 61: 8480–8485, 2001

    Google Scholar 

  134. Drummond AH,Beckett P,Brown PD,Bone EA,Davidson AH,Galloway WA,Gearing AJ,Huxley P,Laber D,McCourt M,Whittaker M,Wood LM,Wright A: Preclinical and clinical studies of MMP inhibitors in cancer. Ann NY Acad Sci 878: 228–235, 1999

    Google Scholar 

  135. Eccles SA,Box GM,Court WJ,Bone EA,Thomas W,Brown PD: Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res 56: 2815–2822, 1996

    Google Scholar 

  136. Winding B,NicAmhlaoibh R,Misander H,Hoegh-Andersen P,Andersen TL,Holst-Hansen C,Heegaard AM,Foged NT,Brunner N,Delaisse JM: Synthetic matrix metalloproteinase inhibitors inhibit growth of established breast cancer osteolytic lesions and prolong survival in mice. Clin Cancer Res 8: 1932–1939, 2002

    Google Scholar 

  137. Lee J,Weber M,Mejia S,Bone E,Watson P,Orr W: A matrix metalloproteinase inhibitor, batimastat, retards the development of osteolytic bone metastases by MDA-MB-231 human breast cancer cells in Balb C nu/nu mice. Eur J Cancer 37: 106–113, 2001

    Google Scholar 

  138. Low JA,Johnson MD,Bone EA,Dickson RB: The matrix metalloproteinase inhibitor batimastat (BB-94) retards human breast cancer solid tumor growth but not ascites formation in nude mice. Clin Cancer Res 2: 1207–1214, 1996

    Google Scholar 

  139. Sledge GW, Jr,Qulali M,Goulet R,Bone EA,Fife R: Effect of matrix metalloproteinase inhibitor batimastat on breast cancer regrowth and metastasis in athymic mice. J Natl Cancer Inst 87: 1546–1550, 1995

    Google Scholar 

  140. Nozaki S,Sissons S,Casazza AM,Sledge GW: Inhibition of human breast cancer regrowth and pulmonary metastases by BAY 12–9566 in athymic mice. Abstract. Proc. Am. Assoc Cancer Res 39: 301, 1998

    Google Scholar 

  141. Davies B,Brown PD,East N,Crimmin MJ,Balkwill FR: A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res 53: 2087–2091, 1993

    Google Scholar 

  142. Giavazzi R,Garofalo A,Ferri C,Lucchini V,Bone EA,Chiari S,Brown PD,Nicoletti MI,Taraboletti G: Batimastat, a synthetic inhibitor of matrix metalloproteinases, potentiates the antitumor activity of cisplatin in ovarian carcinoma xenografts. Clin Cancer Res 4: 985–992, 1998

    Google Scholar 

  143. Prontera C,Mariani B,Rossi C,Poggi A,Rotilio D: Inhibition of gelatinase A (MMP-2) by batimastat and captopril reduces tumor growth and lung metastases in mice bearing Lewis lung carcinoma. Int J Cancer 81: 761–766, 1999

    Google Scholar 

  144. Santos O,McDermott CD,Daniels RG,Appelt K: Rodent pharmacokinetic and anti-tumor efficacy studies with a series of synthetic inhibitors of matrix metalloproteinases. Clin Exp Metastasis 15: 499–508, 1997

    Google Scholar 

  145. Hibner B,Bull C,Flynn C,Eberwein D,Garrison T,Casazza A,Carter C,Gibson N: Activity of the matrix metalloproteinase inhibitor BAY 12–9566 against murine subcutaneous and metastatic in vivo models. Abstract. Ann Oncol 9: 75, 1998

    Google Scholar 

  146. Shalinsky DR,Brekken J,Zou H,Bloom LA,McDermott CD,Zook S,Varki NM,Appelt K: Marked antiangiogenic and antitumor efficacy of AG3340 in chemoresistant human non-small cell lung cancer tumors: Single agent and combination chemotherapy studies. Clin Cancer Res 5: 1905–1917, 1999

    Google Scholar 

  147. M.R. J, Mullen JBM,Pagura M,Appelt K,Shalinsky DR: AG3340, a novel matrix metalloproteinase (MMP) inhibitor, decreases growth and metastases of orthotopic human lung cancer in a nude rat preclinical model system. Abstract. Proc. Am. Assoc Cancer Res 39: 302, 1998

    Google Scholar 

  148. Chirivi RG,Garofalo A,Crimmin MJ,Bawden LJ,Stoppacciaro A,Brown PD,Giavazzi R: Inhibition of the 200 Pavlaki and Zucker metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer 58: 460–464, 1994

    Google Scholar 

  149. Wylie S,MacDonald IC,Varghese HJ,Schmidt EE,Morris VL,Groom AC,Chambers AF: The matrix metalloproteinase inhibitor batimastat inhibits angiogenesis in liver metastases of B16F1 melanoma cells. Clin Exp Metastasis 17: 111–117, 1999

    Google Scholar 

  150. Neri A,Goggin B,Kolis S,Brekken J,Khelemskaya N,Gabriel L,Robinson SR,Webber S,Wood AW,Appelt K,Shalinsky DR: Pharmacokinetics and efficacy of a novel matrix metalloproteinase inhibitor, AG3340, in single agent and combination therapy against B16-F10 melanoma tumors developing in the lung after IV-tail vein implantation in C57BL/6 mice. Abstract. Proc Am Assoc Cancer Res 39: 302, 1998

    Google Scholar 

  151. Lee J,Bone EA,Watson PH,Orr FW: Effect of matrix metalloproteinase (MMP) inhibitor, Batimastat, in Bone Metastasis. Abstract. Proc Am Assoc Cancer Res 39: 299, 1998

    Google Scholar 

  152. Watson SA,Morris TM,Collins HM,Bawden LJ,Hawkins K,Bone EA: Inhibition of tumor growth by marimastat in a human xenograft model of gastric cancer: Relationship with levels of circulating CEA. Br J Cancer 81: 19–23, 1999

    Google Scholar 

  153. Watson SA,Morris TM,Robinson G,Crimmin MJ,Brown PD,Hardcastle JD: Inhibition of organ invasion by the matrix metalloproteinase inhibitor batimastat (BB-94) in two human colon carcinoma metastasis models. Cancer Res 55: 3629–3633, 1995

    Google Scholar 

  154. Watson SA,Morris TM,Parsons SL,Steele RJ,Brown PD: Therapeutic effect of the matrix metalloproteinase inhibitor, batimastat, in a human colorectal cancer ascites model. Br J Cancer 74: 1354–1358, 1996

    Google Scholar 

  155. Flynn C,Bull C,Matherne C,Eberwein D,Gibson N,Hibner B: Anti-invasive and anti-metastatic activity of the novel MMP inhibitor BAY 12–9566 in subcutaneous and orthotopic models using the human colon carcinoma, HCT 116. Abstract. Ann Oncol 9: 75, 1998

    Google Scholar 

  156. Wang X,Fu X,Brown PD,Crimmin MJ,Hoffman RM: Matrix metalloproteinase inhibitor BB-94 (batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice. Cancer Res 54: 4726–4728, 1994

    Google Scholar 

  157. Zervos EE,Norman JG,Gower WR,Franz MG,Rosemurgy AS: Matrix metalloproteinase inhibition attenuates human pancreatic cancer growth in vitro and decreases mortality and tumorigenesis in vivo. J Surg Res 69: 367–371, 1997

    Google Scholar 

  158. Haq M,Shafii A,Zervos EE,Rosemurgy AS: Addition of matrix metalloproteinase inhibition to conventional cytotoxic therapy reduces tumor implantation and prolongs survival in a murine model of human pancreatic cancer. Cancer Res 60: 3207–3211, 2000

    Google Scholar 

  159. Alves F,Borchers U,Padge B,Augustin H,Nebendahl K,Kloppel G,Tietze LF: Inhibitory effect of a matrix metalloproteinase inhibitor on growth and spread of human pancreatic ductal adenocarcinoma evaluated in an orthotopic severe combined immunodeficient (SCID) mouse model. Cancer Lett 165: 161–170, 2001

    Google Scholar 

  160. Price A,Shi Q,Morris D,Wilcox ME,Brasher PM,Rewcastle NB,Shalinsky D,Zou H,Appelt K,Johnston RN,Yong VW,Edwards D,Forsyth P: Marked inhibition of tumor growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase inhibitor AG3340. Clin Cancer Res 5: 845–854, 1999

    Google Scholar 

  161. Shalinsky DR,Brekken J,Zou H,Bender S,Zook S,Appelt K,Webber S,Varki NV: Increased apoptosis in human androgen-independent prostatic PC-3 tumors following oral administration of a novel matrix metalloproteinase (MMP) inhibitor, AG3340, in male nude mice. Abstract. Proc Am Assoc Cancer Res 39: 646, 1998

    Google Scholar 

  162. Nemeth JA,Yousif R,Herzog M,Che M,Upadhyay J,Shekarriz B,Bhagat S,Mullins C,Fridman R,Cher ML: Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis. J Natl Cancer Inst 94: 17–25, 2002

    Google Scholar 

  163. Knox JD,Bretton L,Lynch T,Bowden GT,Nagle RB: Synthetic matrix metalloproteinase inhibitor, BB-94, inhibits the invasion of neoplastic human prostate cells in a mouse model. Prostate 35: 248–254, 1998

    Google Scholar 

  164. Taraboletti G,Garofalo A,Belotti D,Drudis T,Borsotti P,Scanziani E,Brown PD,Giavazzi R: Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases. J Natl Cancer Inst 87: 293–298, 1995

    Google Scholar 

  165. Welch DR: Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 15: 272–306, 1997

    Google Scholar 

  166. Lozonschi L,Sunamura M,Kobari M,Egawa S,Ding L,Matsuno S: Controlling tumor angiogenesis and metastasis of C26 murine colon adenocarcinoma by a new matrix metalloproteinase inhibitor KB-R7785 in two tumor models. Cancer Res 59: 1252–1258, 1999

    Google Scholar 

  167. Naito K,Kanbayashi N,Nakajima S,Murai T,Arakawa K,Nishimura S,Okuyama A: Inhibition of growth of human tumor cells in nude mice by a metalloproteinase inhibitor. Int J Cancer 58: 730–735, 1994

    Google Scholar 

  168. Chambers AF,MacDonald IC,Schmidt EE,Morris VL,Groom AC: Preclinical assessment of anti-cancer therapeutic strategies using in vivo videomicroscopy. Cancer Metastasis Rev 17: 263–269, 1999

    Google Scholar 

  169. Kimata M,Otani Y,Kubota T,Igarashi N,Yokoyama T,Wada N,Yoshimizu N,Fujii M,Kameyama K,Okada Y,Kumai K,Kitajima M: Matrix metalloproteinase inhibitor marimastat decreases peritoneal spread of gastric carcinoma in nude mice. Jpn J Cancer Res 93: 834–841, 2002

    Google Scholar 

  170. Matsushita A,Onda M,Uchida E,Maekawa R,Yoshioka T: Antitumor effect of a new selective matrix metalloproteinase inhibitor, MMI-166, on experimental pancreatic cancer. Int J Cancer 92: 434–440, 2001

    Google Scholar 

  171. Lein M, Jung K,Ortel B,Stephan C,Rothaug W,Juchem R,Johannsen M,Deger S,Schnorr D,Loening S,Krell HW: The new synthetic matrix metalloproteinase inhibitor (Roche 28–2653) reduces tumor growth and prolongs survival in a prostate cancer standard rat model. Oncogene 21: 2089–2096, 2002

    Google Scholar 

  172. Anderson IC,Shipp MA,Docherty AJP,Teicher BA: Combination therapy including a gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res 56: 715–718, 1996

    Google Scholar 

  173. O-Charoenrat P,Rhys-Evans P,Eccles S: A synthetic matrix metalloproteinase inhibitor prevents squamous carcinoma cell proliferation by interfering with epidermal growth factor receptor autocrine loops. Int J Cancer 100: 527–533, 2002

    Google Scholar 

  174. Koivunen E,Arap W,Valtanen H,Rainisalo A,Medina OP,Heikkila P,Kantor C,Gahmberg CG,Salo T,Konttinen YT,Sorsa T,Ruoslahti E,Pasqualini R: Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 17: 768–774, 1999

    Google Scholar 

  175. Weber MH,Lee J,Orr FW: The effect of Neovastat (AE-941) on an experimental metastatic bone tumor model. Int J Oncol 20: 299–303, 2002

    Google Scholar 

  176. Dupont E,Falardeau P,Mousa SA,Dimitriadou V,Pepin MC,Wang T,Alaoui-Jamali MA: Antiangiogenic and antimetastatic properties of Neovastat (AE-941), an orally active extract derived from cartilage tissue. Clin Exp Metastasis 19: 145–453, 2002

    Google Scholar 

  177. Masumori N,Tsukamoto T,Miyao N,Kumamoto Y,Saiki I,Yoneda J: Inhibitory effect of minocycline on in vitro invasion and experimental metastasis of mouse renal adenocarcinoma. J Urol 151: 1400–1404, 1994

    Google Scholar 

  178. Seftor RE,Seftor EA,De Larco JE,Kleiner DE,Leferson J,Stetler-Stevenson WG,McNamara TF,Golub LM,Hendrix MJ: Chemically modified tetracyclines inhibit human melanoma cell invasion and metastasis. Clin Exp Metastasis 16: 217–225, 1998

    Google Scholar 

  179. Fife RS,Sledge GW, Jr: Effects of doxycycline on cancer cells in vitro and in vivo. Adv Dent Res 12: 94–96, 1998

    Google Scholar 

  180. Lokeshwar BL,Selzer MG,Zhu BQ,Block NL,Golub LM: Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int J Cancer 98: 297–309, 2002

    Google Scholar 

  181. Bergers G,Javaherian K,Lo KM,Folkman J,Hanahan D: Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284: 808–812, 1999

    Google Scholar 

  182. Kruger A,Soeltl R,Sopov I,Kopitz C,Arlt M,Magdolen V,Harbeck N,Gansbacher B,Schmitt M: Hydroxamatetype matrix metalloproteinase inhibitor batimastat promotes liver metastasis. Cancer Res 61: 1272–1275, 2001

    Google Scholar 

  183. Zubair AC,Ali SA,Rees RC,Goepel JR,Goyns MH: Investigation of the effect of BB-94 (batimastat) on the colonization potential of human lymphoma cells in SCID mice. Cancer Lett 107: 91–95, 1996

    Google Scholar 

  184. Maquoi E,Munaut C,Colige A,Lambert C,Frankenne F, Noel A,Grams F,Krell HW,Foidart JM: Stimulation of matrix metalloproteinase-9 expression in human fibrosarcoma cells by synthetic matrix metalloproteinase inhibitors. Exp Cell Res 275: 110–121, 2002

    Google Scholar 

  185. Zucker S (moderator): Guidelines for clinical trial design for evaluation of MMP inhibitors. Ann NY Acad Sci 732: 273–279, 1994

    Google Scholar 

  186. Rothenberg ML,Nelson AR,Hande KR: New drugs on the horizon: Matrix metalloproteinase inhibitors. Oncologist 3: 271–274, 1998

    Google Scholar 

  187. Rasmussen HS: Batimastat and marimastat in cancer. Summary of early clinical data. In A. TB (ed.) Antiangiogenic Agents in Cancer Therapy. Humana Press Inc, Totowa NJ 1999, pp 399–405.

    Google Scholar 

  188. Erlichman C,Adjei A,Alberts Sea: Phase I study of BAY 12–9566-a matrix metalloproteinase inhibitor. Abstract. Proc Am Soc Clin Oncol 17: 217a, 1998

    Google Scholar 

  189. Nemunaitis J,Poole C,Primrose J,Rosemurgy A,Malfetano J,Brown P,Berrington A,Cornish A,Lynch K,Rasmussen H,Kerr D,Cox D,Millar A: Combined analysis of studies of the effects of the matrix metalloproteinase inhibitor marimastat on serum tumor markers in advanced cancer: Selection of a biologically active and tolerable dose for longer-term studies. Clin Cancer Res 4: 1101–1109, 1998

    Google Scholar 

  190. Levin V,Phuphanich M,Glantz MJ,Mason WP,Groves M,Recht L,Shaffrey M,Pudvalli V,Roeck B,Zhang M,Collier MA: Randomized phase II studyof temozolomide (TMZ) with and without the matrix metalloproteinase (MMP) inhibitor prinomastat in patients (pts) with glioblastoma multiforme (GBM) following best surgery and radiation therapy. Abstract. Proc Am Soc Clin Oncol 21: 26a, 2002

  191. Heath EI,Burtness BA,Kleinberg L,Salem R,Yang SC,Heitmiller RF,Canco MI,Knisely JPS,Topazian M,Rohmiller B,Pithavala Y,Colleir MA,Forastiere AA: Phase II parallel-design study of preoperative combined modality therapy and the matrix metalloproteinase (MMP) inhibitor prinomastat (P) in patients with esophageal adenocarcinoma. Proc Am Soc Clin Oncol 21: 173a, 2002

    Google Scholar 

  192. Bramhall SR,Rosemurgy A,Brown PD,Bowry C,Buckels JA: Marimastat as first-line therapy for patients with unresectable pancreatic cancer: A randomized trial. J Clin Oncol 19: 3447–3455, 2001

    Google Scholar 

  193. Gunzburg WH,Lohr M,Salmons B: Novel treatments and therapies in development for pancreatic cancer. Expert Opin Investig Drugs 11: 769–786, 2002

    Google Scholar 

  194. Hess KR,Abbruzzese JL: Matrix metalloproteinase inhibition of pancreatic cancer: Matching mechanism of action to clinical trial design. J Clin Oncol 19: 3445–3446, 2001

    Google Scholar 

  195. Bramhall SR,Schulz J,Nemunaitis J,Brown PD,Baillet M,Buckels JA: A double-blind placebo-controled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br J Cancer 87: 161–167, 2002

    Google Scholar 

  196. Bramhall SR,Hallissey MT,Whiting J,Scholefield J,Tierney G,Stuart RC,Hawkins RE,McCulloch P,Maughan T,Brown PD,Baillet M,Fielding JW: Marimastat as maintenance therapy for patients with advanced gastric cancer: A randomised trial Br J Cancer 86: 1864–1870, 2002

    Google Scholar 

  197. Fielding J,Scholefield J,Stuart J,Hawkins R,McCulloch P,Maughan T,Seymour M,Van Cutsem E,Thorlacius-Ussing C,Hovendal C: A randomized double-blind placebo-controled study of marimastat in patients with inoperable gastric adenocarcinoma. Abstract. Proc Am Soc Clin Oncol 19: 240a, 2000

    Google Scholar 

  198. plc. BB: Results of Marimastat Study 131 in Glioblastoma Multiforme. British Biotech plc, Oxford 2000

    Google Scholar 

  199. plc BB: Results of Marimastat Study 186 in Patients with Advanced Ovarian Cancer. British biotech plc, Oxford 2000

    Google Scholar 

  200. plc BB: Results of Marimastat Study 140 in Patients with Small Cell Lung Cancer. British Biotech plc, Oxford 2001

    Google Scholar 

  201. Sparano JA,Bernardo P,Gradishar WJ,Ingle JN,Zucker S,Davidson NE: Randomized phase III trial of marimastat versus placebo in patients with metastatic breast cancer who have responding or stable disease after firstline chemotherapy: An Eastern Cooperative Oncology Group Trial (E2196). Am Soc Clin Oncol (oral presentation), 2002

  202. Moore MJ,Hamm H,Eisenberg P,Dagenais M,Hagan K,Fields A,Greenberg B,Schwartz B,Ottaway J,Zee B,Seymour L: A comparison between gemcitabine and the matrix metalloproteinase inhibitor BAY 12–9566 in patients with advanced pancreatic cancer. Abstract. Proc Am Soc Clin Oncol 19: 240a, 2000

    Google Scholar 

  203. Smylie M,Mercier R,Aboulafia D,Tucker R,Bonomi P,Collier M,Keller MR,Stuart-Smith J,Knowles M,Clendeninn NJ,Shepherd F: Phase III study of the matrix metalloproteinase (MMP) in-hibitor prinomastat in patients having advanced non-small cell lung cancer. Abstract. Am Soc Clin Oncol 20: 307a, 2001

    Google Scholar 

  204. Bonomi P: Matrix metalloproteinases and matrix metalloproteinase inhibitors in lung cancer. Semin Oncol 29: 78–86, 2002

    Google Scholar 

  205. Cianfrocca M,Cooley TP,Lee JY,Rudek MA,Scadden DT,Ratner L,Pluda JM,Figg WD,Krown SE,Dezube BJ: Matrix metalloproteinase inhibitor COL-3 in the treatment of AIDS-related Kaposi's sarcoma: A phase I AIDS malignancy consortium study. J Clin Oncol 20: 153–159, 2002

    Google Scholar 

  206. Rudek MA,Figg WD,Dyer V,Dahut W,Turner M,Steinburg Sea: A phase I clinical trial of oral Col-3, a matrix metalloproteinase inhibitor, administered daily in patients with refractory metastatic cancer. Abstract. Proc Am Assoc Cancer 41: 612, 2000

    Google Scholar 

  207. Bello L,Lucini V,Carrabba G,Giussani C,Machluf M,Pluderi M,Nikas D,Zhang J,Tomei G,Villani RM,Carroll RS,Bikfalvi A,Black PM: Simultaneous inhibition of glioma angiogenesis, cell proliferation, and invasion by a naturally occurring fragment of human metalloproteinase-2. Cancer Res 61: 8730–8736, 2001

    Google Scholar 

  208. Peng KW,Vile R,Cosset FL,Russell S: Selective transduction of protease-rich tumors by matrix-metalloproteinase-targeted retroviral vectors. Gene Ther 6: 1552–1557, 1999

    Google Scholar 

  209. Zucker S,Wieman JM,Lysik RM,Wilkie D,Ramamurthy N,Lane B: Metastatic mouse melanoma cells release collagen-gelatin degrading metalloproteinases as components of shed membrane vesicles. Biochim Biophys Acta 924: 225–237, 1987

    Google Scholar 

  210. Zucker S,Wieman J,Lysik R: Enrichment of collagen and gelatin degrading activities in the plasma membranes of cancer cells. Biochim Biophys Acta 924: 225–237, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pavlaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlaki, M., Zucker, S. Matrix metalloproteinase inhibitors (MMPIs): The beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Rev 22, 177–203 (2003). https://doi.org/10.1023/A:1023047431869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023047431869

Navigation