Skip to main content
Log in

Role of matrix metalloproteinases (MMPs) in colorectal cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Considerable evidence has implicated matrix metalloproteinases (MMPs), a group of zinc-dependent endopeptidases, in the degradation of extracellular matrix (ECM) during the metastatic process. Most MMPs are secreted as inactive zymogens and are activated extracellularly. Over expression of MMP-1, -2, -3, -7, -9, -13, and MT1-MMP has been demonstrated in human colorectal cancers. The degree of over expression of some MMPs has been noted to correlate with stage of disease and/or prognosis. An unresolved debate has centered on whether MMPs are produced by the stromal cells surrounding a tumor or by the colorectal cancer cells themselves. MMP-7 is produced abundantly by colorectal cancer cells. The presence of a mutation in the APC gene results in nuclear accumulation of the β-Catenin/TCF complex, which serves as a transcriptional factor that upregulates MMP-7 expression. Increased expression of MMP-3 in colorectal cancer correlates with low levels of microsatelite instability and poor prognosis. Increased levels of MMP-9 (produced primarily by inflammatory cells) have been demonstrated early in the transition from colon adenoma to adenocarcinoma. In contrast to other MMPs, overexpression of MMP-12 is associated with increased survival in colorectal cancer, presumably as a result of an inhibitory effect on angiogenesis. Based on the assumption that MMPs were responsible for metastasis, several orally active, low molecular weight inhibitors of MMPs (MMPIs) have been developed. These MMPIs have been effective in controlling cancer progression in animals, but have failed to prolong survival in phase III clinical trials in patients with advanced cancer. MMPIs have not yet been evaluated in patients with colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jemal A, Thomas A, Murray T, Thun M: Cancer statistics. CA Cancer J Clin 52: 23–47, 2002

    Google Scholar 

  2. Cohen AM, Tremiterra S, Candela F, Thaler HT, Sigurdson ER: Prognosis of node-positive colon cancer. Cancer 67: 1859–1861, 1991

    Google Scholar 

  3. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 100: 57–70, 2000

    Google Scholar 

  4. Zucker S: A critical appraisal of the role of proteolytic enzymes in cancer invasion: Emphasis on tumor surface proteinases. Cancer Investigation 6: 219–231, 1988

    Google Scholar 

  5. Zucker S, Cao J, Molloy CJ: Role of matrix metalloproteinases and plasminogen activators in cancer and metastasis: Therapeutic strategies. In Anticancer Drug Development. BC Baguley, DJ Kerr, eds. Academic Press, San Diego, CA, 91–122, 2002

    Google Scholar 

  6. Zucker S, Cao J, Chen W-T: Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19: 6642–6650, 2001

    Google Scholar 

  7. Mignatti P, Rifkin DB: Biology and biochemistry of proteinases in tumor invasion. Physiological Reviews 73: 161–195, 1993

    Google Scholar 

  8. Stetler-Stevenson W, Hewitt RE, Corcoran ML: Matrix metalloproteinases and tumor invasion: From correlation causilty to the clinic. Seminars in Cancer Biol 7: 147–154, 1996

    Google Scholar 

  9. Della Porta P, Soeltl R, Krell HW, Collins K, O'Donoghue M, Schmitt M, Kruger A: Combined treatment with serine protease inhibitor aprotonin and matrix metalloproteinase inhibitor Batimastat (BB-94) does not prevent invasion of human esophageal and ovarian carcinoma cells in vitro. Anticancer Res 19:3809–3816, 1999

    Google Scholar 

  10. Zucker S, Lysik RM, Zarrabi MH, Stetler-Stevenson W, Liotta LA, Birkedal-Hansen H, Mann W, Furie M: Type IV collagenase/gelatinase (MMP2) is not increased in plasma of patients with cancer. Cancer Epidemiology, Biomarkers, and Prevention 1: 475–479, 1992

    Google Scholar 

  11. Noel A, Gilles C, Bajou K, Devy L, Kebers F, Lewalle JM, Manquoi E, Munaut C, Remacle A, Foidart JM: Emerging roles for proteinases in cancer. Invasion Metastasis 17: 221–239, 1997

    Google Scholar 

  12. Gross J, Lapiere CM: Collagenolytic activity in amphibian tissues; a tissue culture assay. Proc Natl Acad Sci USA 48: 1014–1022, 1962

    Google Scholar 

  13. Nagase H, Woessner F: Matrix metalloproteinases. J Biol Chem 274: 21491–21494, 1999

    Google Scholar 

  14. Birkedal-Hansen H: Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 7: 728–735, 1995

    Google Scholar 

  15. Stoker W, Bode W: Structural features of a superfamily of zinc-endopeptidases: The metzincins. Curr Opin Str Biol 5: 383–390, 1995

    Google Scholar 

  16. Sternlicht MD, Werb Z: How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17: 463–516, 2001

    Google Scholar 

  17. Cao J, Drews M, Lee HM, Conner C, Bahou WF, Zucker S: The propeptide domain of membrane type I matrix metalloproteinase is required for binding of tissue inhibitor of metalloproteinases and for activation of progelatinase A. J Biol Chem 273: 34745–34752, 1998

    Google Scholar 

  18. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M: A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 370: 61–65, 1994

    Google Scholar 

  19. Barmina OY, Walling HW, Fiacco GJ, Freije JM, Lopez-Otin C, Jeffrey JJ, Partridge CA: Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization. J Biol Chem 274: 30087–30093, 1999

    Google Scholar 

  20. Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K, Kitaura Y, Takai S, Sasahara RM, Horimoto A, Ikawa Y, Ratzkin BJ, Arakawa T, Noda M: Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci USA 95: 13221–13226, 1998

    Google Scholar 

  21. Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M: Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153: 893–904, 2001

    Google Scholar 

  22. McQuibban GA, Butler G, Gong J-H, Bendall L, Powers C, Clark-Lewis I, Overall CM: Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 276: 43503–43508, 2001

    Google Scholar 

  23. Xu J, Rodriguez D, Petitclerc, Kim JJ, Hangai M, Yuen SM, Davis GE, Brooks PC: Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154: 1069–1079, 2001

    Google Scholar 

  24. Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OL, Chenard MP, Rio MC, Chambon P: A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348: 699–704, 1990

    Google Scholar 

  25. Polette M, Nawrocki B, Gilles C, Sato H, Seiki M, Tournier JM, Birembaut P: MT-MMP expression and localization in human lung and breast cancer. Virchows Arch 428: 29–35, 1996

    Google Scholar 

  26. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM: Matrix metalloproteinases: Biologic activity and clinical implications. J Clin Oncol 18: 1135–1139, 2000

    Google Scholar 

  27. Still K, Robson CN, Autzen P, Robinson MC, Hamby FC: Localization and quantification of mRNA for matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) in human benign and malignant prostatic tissue. Prostate 42: 18–25, 2000

    Google Scholar 

  28. Yu Q, Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-b and promotes tumor invasion and angiogenesis. Genes Dev 14: 163–176, 2000

    Google Scholar 

  29. Olson MW, Toth M, Gervasi DC, Sado Y, Ninomiya Y, Fridman R: High affinity binding of latent matrix metalloproteinase-9 to the a2(IV) chain of collagen IV. J Biol Chem 273: 10672–10681, 1998

    Google Scholar 

  30. Shiraga M, Yano S, Yamamoto A, Ogawa H, Goto H, Miki M, Miki K, Zhang H, Sone S: Organ heterogeneity of host-derived matrix metalloproteinase expression and its involvement in multiple-organ metastasis by lung cancer cell lines. Cancer Res 62: 5967–5973, 2002

    Google Scholar 

  31. Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, Nabeshima K: The human tumor cell-derived collagenase stimulating factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 55: 434–439, 1995

    Google Scholar 

  32. Guo H, Li R, Zucker S, Toole BP: EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res 60: 888–891, 2000

    Google Scholar 

  33. Zucker S, Hymowitz M, Rollo EE, Mann R, Conner CE, Cao J, Foda H, Tompkins DC, Toole B: Tumorigenic potential of extracellular matrix metalloproteinase induce (EMMPRIN). Am J Pathol 158: 1921–1928, 2001

    Google Scholar 

  34. Ornstein DL, MacNab J, Cohn KH: Evidence for tumorhost cooperation in regulatingMMP-2expression inhuman colon cancer. Clin Exp Metastasis 17: 205–212, 1999

    Google Scholar 

  35. Ko Y-C, Langley KE, Mendiaz EA, Parker V, Tayler SM, DeClerck YA: The C-terminal domain of tissue inhibitor of metalloproteinase-2 is required for cell binding but not for antimetalloproteinase activity. Biochem Biophys Res Commun 236: 100–105, 1997

    Google Scholar 

  36. Kumar A, Collins HM, Scholefield JH, Watson SA: Increased type-IV collagenase (MMP-2 and MMP-9) activity following preoperative radiotherapy in rectal cancer. Br J Cancer 82: 960–965, 2000

    Google Scholar 

  37. Kumar A, Collins HM, Van Tam J, Scholefield JH, Watson SA: Effect of preoperative radiotherapy on matrilysin gene expression in rectal cancer. Eur J Cancer 38: 505–510, 2002

    Google Scholar 

  38. Qian LW, Mitzumoto K, Urashima T, Nagai E, Maehara N, Sato N, Nakajima M Tanaka M: Radiation induced increase in invasive potential of human pancreatic cancer cells and its blockade by matrix metalloproteinase inhibitor. Clin Cancer Res 8: 1223–1227, 2002

    Google Scholar 

  39. Murray G, Duncan M, O'Neil P, Melvin WT, Fothergill JE: Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med 2: 461–462, 1996

    Google Scholar 

  40. Shiozawa J, Ito M, Nakayama T, Nadashima M, Kohno S, Sekine I: Expression of matrix metalloproteinase-1 in human colorectal carcinoma. Modern Pathol 13: 925–933, 2000

    Google Scholar 

  41. Sunami E, Tsuno N, Osada T, Saito S, Kitayama J, Tomozawa S, Tsuruo T, Shibata Y, Muto T, Nagawa H: MMP-1 is a prognostic marker for hematogenous metastasis of colorectal cancer. Oncologist 5: 108–114, 2000

    Google Scholar 

  42. Ghilardi G, Biondi ML, Mangoni J, Leviti S, DeMonti M, Guagnellini E, Scorza R: Matrix metalloproteinase-1 promoter polymorphism iG/2G is correlated with colorectal cancer invasiveness. Clin Cancer Res 7: 2344–2346, 2001

    Google Scholar 

  43. Matrisian L: Matrix metalloproteinase gene expression. Ann NY Acad Sci 732: 42–50, 1994

    Google Scholar 

  44. Paulsom R, Pignatelli M, Stetler-Stevenson WG, Liotta LA, Wright PA, Jeffery RE, Longcroft JM, Rogers L, Stamp GW: Stromal expression of 72 Kda type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am J Pathol 141: 389–396, 1992

    Google Scholar 

  45. Parsons SL, Watson SA, Collins HM, Grifffin NR, Clarke PA, Steele RJC: Gelatinase (MMP-2 and-9) expression in gastrointestinal malignancy. Brit J Cancer 78: 1495–1502, 1998

    Google Scholar 

  46. Barozzi C, Ravaioli M, D'Errico A, Grazi GL, Poggioli G, Cavrini G, Mazziotti A, Grigioni WF: Relevance of biological markers in colorectal carcinoma, A comparative study of a broad panel. Cancer 94: 647–657, 2002

    Google Scholar 

  47. Inuzuka K, Ogata Y, Nagase H, Shirouzu K: Significance of coexpression of urokinase-type plasminogen activator, and matrix metalloproteinase 3 (stromelysin) and 9 (gelatinase B) in colorectal carcinoma. J Surg Res 93: 211–218, 2000

    Google Scholar 

  48. Bubb VJ, Curtis LJ, Cunningham C, Dunlop MG, Carothers AD, Morris RG, White S, Bird CC, Wyllie AH: Microsatellite instability and the role of hMSH2 in sporadic colorectal cancer. Oncogene 1996: 2641–2649, 1996

    Google Scholar 

  49. Moran A, Iniesta P, de Juan C, Gonzalez-Quevedo R, Sanchez-Pernaute A, Diaz-Rubio E, Ramon y Cajal S, Torres A, Balibrea JL, Benito M: Stomelysin-1 promoter mutations impair gelatinase B activation in high microsatellite instability sporadic colorectal tumors. Cancer Res 62: 3855–3860, 2002

    Google Scholar 

  50. Newell KJ, Witty JP, Rodgers WH, Matrisian LM: Expression and localization of matrix-degrading metalloproteinases during colorectal tumorigenesis. Molec Carcinogenesis 10: 199–206, 1994

    Google Scholar 

  51. Adachi Y, Yamamoto H, Itoh F, Hinoda Y, Okada Y, Imai K: Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut 45: 252–258, 1999

    Google Scholar 

  52. Wilson CL, Heppner KJ, Labosky PA, Hogan BLM, Matrisian L: Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci USA 94: 1402–1407, 1997

    Google Scholar 

  53. Hasegawa S, Koshikawa N, Momiyama N, Moriyama K, Ichikawa Y, Ishikawa T, Mitsuhashi M, Shimada H, Miyazaki K: Matrilysin-specific antisense oligonucleotide inhibits liver metastasis of human colon cancer cells in a nude mouse model. Int J Cancer 76: 812–816, 1998

    Google Scholar 

  54. Witty JP, McDonnell S, Newell KJ, Cannon P, Navre M, Tressler RJ, Matrisian L: Modulation of matrilysin levels in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Res 54: 4805–4812, 1994

    Google Scholar 

  55. Vargo-Gogola T, Fingleton B, Crawford HC, Matrisian LM: Matrilysin (matrix metalloproteinase-7) selects for apoptosis-resistant mammary cells in vivo. Cancer Res 62: 5559–5563, 2002

    Google Scholar 

  56. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW: Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787–1790, 1997

    Google Scholar 

  57. Crawford HC, Fingleton B, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian L: The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18: 2883–2891, 1999

    Google Scholar 

  58. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R: Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO 16: 3797–3804, 1997

    Google Scholar 

  59. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H: Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/-colon carcinoma. Science 275: 1784–1787, 1997

    Google Scholar 

  60. Wong NA, Pignatelli M: Beta-catenin-a linchpin in colorectal carcinogenesis? Am J Pathol 160: 389–401, 2002

    Google Scholar 

  61. Zeng ZS, Huang Y, Cohen AM, Guillem JG: Prediction of colorectal cancer relapse and survival via tissue RNA levels of matrix metalloproteinase-9. J Clin Oncol 14: 3133–3140, 1996

    Google Scholar 

  62. Zucker S, Lysik RM, DiMassimo BI, Zarrabi HM, Moll UM, Grimson R, Tickle SP, Docherty AJP: Plasma assay of gelatinase B: Tissue inhibitor of metalloproteinase (TIMP) complexes in cancer. Cancer 76: 700–708, 1995

    Google Scholar 

  63. Nielsen BS, Timshel S, Kjeldsen L, Sehested M, Pyke C, Rorregaard N, Dano K: 92 kDa type IV collagenase (MMP-9) is expressed in neutrophils and macrophages but not in malignant epithelilal cells in human colon cancer. Int J Cancer 365: 57–62, 1999

    Google Scholar 

  64. Roeb E, Dietrich CG, Winograd R, Arndt M, Breuer B, Fass J, Schumpelick V, Matern S: Activity and cellular origin of gelatinases in patients with colon and rectal carcinoma differential activity of matrix metalloproteinase-9. Cancer 92: 2680–2691, 2001

    Google Scholar 

  65. Dong Z, Kumar R, Yang X, Fidler IJ: Macrophagederived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88: 801–810, 1997

    Google Scholar 

  66. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastasis by a Lewis lung carcinoma. Cell 79: 315–328, 1994

    Google Scholar 

  67. Yang W, Aril S, Gorrin-Rivas M, Mori A, Onodera H, Imamura M: Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. Cancer 91: 1277–1283, 2001

    Google Scholar 

  68. Leeman MF, McKay JA, Murray GI: Matrix metalloproteinase 13 activity is associated with poor prognosis in colorectal cancer. J Clin Pathol 55: 758–762, 2002

    Google Scholar 

  69. Knauper V, Will H, Lopez-Otin C, Atkinson SJ, Stanton H, Hembry RM, Murphy G: Cellular mechanism for human procollagenase-3 (MMP-13) activation. J Biol Chem 271: 17124–17131, 1996

    Google Scholar 

  70. Sardinhah TC, Nogueras JJ, Xiong H, Weiss EG, Wexner SD: Membrane-type 1 matrix metalloproteinase mRNA expression in colorectal cancer. Dis Colon Rectum 43: 389–395, 2000.

    Google Scholar 

  71. Malhotra S, Newman E, Eisenberg D, Scholes J, Wieczorek R, Mignatti P, Shamamian P: Increased membrane type1 matrix metalloproteinase expression from adenoma to colon cancer: A possible mechanism of neoplastic progression. Dis Colon Rectum 45: 537–543, 2002

    Google Scholar 

  72. Takahashi M, Tsunoda T, Seiki M, Nakamura Y, Furukawa Y: Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene 21: 5861–5867, 2002

    Google Scholar 

  73. Lu X, Levy M, Weinstein IB, Santella RM: Immunologic quantification of levels of tissue inhibitor of metalloproteinase-1 in human colon cancer. Cancer Res 51: 6231–6235, 1991

    Google Scholar 

  74. Joo YE, Seo KS, Kim HS, Rew JS, Park CS, Kim SJ: Role of tissue inhibitors of metalloproteinases (TIMPs) in colorectal carcinoma. J Korean Med Sci 14: 417–423, 1999

    Google Scholar 

  75. Ring P, Johansson K, Hoyhtya M, Ribin K, Lindmark G: Expression of tissue inhibitor of metalloproteinases TIMP-2 in human colorectal cancer-a predictor of tumor stage. Br J Cancer 76: 805–811, 1997

    Google Scholar 

  76. Agrez M, Gu X, Turton J, Meldrum C, Niu J, Antalis T Howard EW: The avb6 integrin induces gelatinase B secretion in colon cancer cells. Int J Cancer 81: 90–97, 1999

    Google Scholar 

  77. Gu X, Niu J, Dorahy DJ, Scott R, Agrez M: Integrin alpha(v)beta-associated ERK2 mediates MMP-9 secretion in colon cancer cells. Br J Cancer 87: 348–351, 2002

    Google Scholar 

  78. Daemi D, Thomasset N, Lissitizky J, Jacquier M-F, Pourreyron C, Rousselle P, Chayvialle J-A, Remy L: Antibeta 4 integrin antibodies enhance migration and invasive abilities of human colon adenocarcinoma cells and their MMP-2 expression. Int J Cancer 85: 850–856, 2000

    Google Scholar 

  79. Shepherd FA, Giaccone G, Seymour L, Debruyne C, Bezak A, Hirsh V, Smylie M, Rubin S, Martins H, Lamont A, Krzakowdki M, Sadura A, Zee B: Prospective, randomized, double-blind, placebo-controled trial of marimastat after response to first-line chemotherapy in patients with small-cell lung cancer: A trial of the National Cancer Institute of Canada-Clinical Trials Group and the European Organization for Research and Treatment of Cancer. J Clin Oncol 20: 4434–4439, 2002

    Google Scholar 

  80. Pavlaki M, Zucker S: Matrix metalloproteinase inhibitors (MMPIs): The beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Reviews (in press): 2003

  81. Sunami E, Tusuno NH, Kitayama J, Saito S, Osada T, Yamguchi H, Tomozawa S, Tsuruo T, Shibata Y, Nagawa H: Decreased synthesis of matrix metalloproteinase-7 and adhesion to the extracellular matrix proteins of human colon cancer cells treated withtroglitazone. Surg Today 32: 343–350, 2002

    Google Scholar 

  82. Ozawa S, Shinohara H, Kanayama HO, Bruns CJ, Bucana CD, Ellis LM, Davis DW, Fidler IJ: Suppression of angiogenesis and therapy of human colon cancer liver metastasis by systemic administration of interferon-alpha. Neoplasia 3: 154–164, 2001

    Google Scholar 

  83. Lokeshwar BL, Selzer MG, Zhu BQ, Block NL, Golub LM: Inhibition of cell proliferation, invasion, tumor growth, and metastasis by an oral, non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int J Cancer 98: 297–309, 2002

    Google Scholar 

  84. van Stappen WJ, Hendriks T, Wobbs T: Correlation between collagenolytic activity and grade of histological differentiation in colorectal tumors. Int J Cancer 45: 1071–1078, 1990

    Google Scholar 

  85. Levy AT, Cioce V, Sobel ME, Gabrisa S, Grigioni WF, Liotta LA, Stetler-Stevenson WG: Increased expression of the Mr 72,000 type IV collagenase in human adenocarcinoma. Cancer Res 51: 439–444, 1991

    Google Scholar 

  86. Poulsom R, Pignatelli M, Stetler-Stevenson WG, Liotta LA, Wright PA, Jeffrey TE, Longcroft JM, Rogers L, Stamp GWH: Stromal expression of 72 kda type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Amer J Pathol 141: 389–394, 1992

    Google Scholar 

  87. Emmert-Buck MR, Roth MJ, Zhuang Z, Campo E, Rozhin J, Solane BF, Liotta LA, Stetler-Stevenson WG: Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples. Am J Pathol 145: 1285–1290, 1994

    Google Scholar 

  88. Kumar S, Baglioni C: Protection from tumor necrosis factor-mediated cytolysis by overexpression of plasminogen activator inhibitor type-1. J Biol Chem 266: 20960–20964, 1991

    Google Scholar 

  89. Yang Z, Strickland DK, Bornstein P: Extracellular MMP-2 levels are regulated by the low-density lipoproteinrelated scavenger receptor and thrombospondin 2. J Biol Chem 276: 8403–8408, 2001

    Google Scholar 

  90. Collins HM, Morris TM, Watson SA: Spectrum of matrix metalloproteinase expression in primary and metastatic colon cancer: relationship to the tissue inhibitors of metalloproteinases and membrane type-1-matrix metalloproteinase. Br J Cancer 12: 1664–1670, 2001

    Google Scholar 

  91. Masaki T, Matsuoka H, Sugiyama M, Abe N, Goto A, Sakamoto A, Atomi Y: Matrilysin (MMP-7) as a significant determinant of malignant potential of early invasive colorectal carcinomas. Br J Cancer 84: 1317–1321, 2001

    Google Scholar 

  92. Mukai M, Sadahiro S, Tokunaga N, Ishizu K, Ito I, Kameya T, Ishikawa K, Iwase H, Suzuki T, Ishida H, Tajima T, Makuuchi H: The expression of MMP-2 and TIMP-2 in patients with primary colorectal adenocarcinoma: Correlation with liver metastasis. Oncology Reports 6: 969–973, 1999

    Google Scholar 

  93. Matsuyama Y, Takao S, Aikou T: Comparison of matrix metalloproteinase expression between primary tumors with or without liver metastasis in pancreatic and colorectal carcinomas. J Surg Oncol 80: 105–110, 2002

    Google Scholar 

  94. Baker E, Bergin FG, Leaper DJ: Matrix metalloproteinases, their tissue inhibitors and colorectal cancer staging. Brit J Surgery 87: 1215–1221, 2000

    Google Scholar 

  95. Zeng ZS, Shu WP, Cohen AM, Guillem JG: Matrix metalloproteinase-7 expression in colorectal cancer liver metastases: Evidence for involvement of MMP-7 activation in human cancer metastases. Clin Cancer Res 8: 144–148, 2002

    Google Scholar 

  96. Papadopoulou S, Scorilas A, Arnogianaki N, Papapanayiotou B, Tzimogiani A, Agnantis N, Talieri M: Expression of gelatinase-A (MMP-2) in human colon cancer and normal colon mucosa. Tumor Biol 22: 383–389, 2001

    Google Scholar 

  97. Chan CC, Menges M, Orzechowski HD, Orendain N, Pistorius G, Feifel G, Zeitz M, Stallmach A: Increased matrix metalloproteinase 2 concentration and transcript expression in advanced colorectal carcinomas. Int J Colorectal Dis 16: 133–140, 2001

    Google Scholar 

  98. Heslin MJ, Yan J, Johnson MR, Weiss H, Diasio RB, Urist MM: Role of matrix metalloproteinases in colorectal carciogenesis. Ann Surg 233: 786–792, 2001

    Google Scholar 

  99. Garbett EA, Reed MR, Brown NJ: Proteolysis in colorectal cancer. Mol Pathol 52: 140–145, 1999

    Google Scholar 

  100. Bodey B, Bodey BJ, Siegel SE, Kaiser HE: Prognostic significance of matrix metalloproteinase expression in colorectal carcinomas. In Vivo 14: 659–666, 2000

    Google Scholar 

  101. Jeziorska M, Haboubi NY, Schofield PE, Ogata Y, Nagase H, Woolley DE: Distribution of gelatinase B (MMP-9) and type IV collagen in colorectal carcinoma. Int J Colorect Dis 9: 141–148, 1994

    Google Scholar 

  102. Kikuchi R, Noguchi T, Takeno S, Kubo N, Uchida Y: Immunohistochemical detection of membrane-type-1-matrix metalloproteinase in colorectal carcinoma. Br J Cancer 83: 215–218, 2000

    Google Scholar 

  103. Kim TS, Kim YB: Correlation between expression of matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) and angiogenesis in colorectal adenocarcinoma. J Korean Med Sci 14: 263–270, 1999

    Google Scholar 

  104. Zeng ZS, Cohen AM, Guillem JG: Loss of basement membrane type IV collagen is associated with increased expression of metalloproteinases 2 and 9 (MMP-2 and MMP-9) during human colorectal tumorigenesis. Carcinogenesis 20: 749–755, 1999

    Google Scholar 

  105. Karakiulakis G, Papanikolaou C, Jankovic SM, Aletras A, Papakanstantinou E, Vretou E, Mirtsou-Fidani V: Increased type IV collagen-degrading activity in metastases originating from primary tumors of the human colon. Invasion Metastasis 17: 158–168, 1997

    Google Scholar 

  106. Ichikawa Y, Ichikawa T, Momiyama N, Yamaguchi S, Masui H, Hasegawa S, Chishima T, Takimoto A, Kitamura H, Akitaya T, Hosokawa T, Mitsuhashi M, Shimada H: Detection of regional lymph node metastases in colon cancer by using RT-PCR for matrix metaloproteinase 7, matrilysin. Clin Exp Metastasis 16: 3–8, 1998

    Google Scholar 

  107. Mori M, Barnard GF, Mimori K, Ueo H, Akiyoshi T, Sugimachi K: Overexpression of matrix metalloproteinase-7 mRNA in human colon carcinomas. Cancer 75: 1516–1519, 1995

    Google Scholar 

  108. McDonnell, Navre M, Coffee JRJ, Matrisian LM: Expression and localization of the matrix metalloproteinase Pump-I (MMP-7) in human gastric and colon carcinomas. Mol Carcinogenesis 4: 527–533, 1991

    Google Scholar 

  109. Ishikawa T, Ichikawa Y, Mitsuhashi M, Momiyama N, Chishima T, Tanaka K, Yamaoka H, Mayazakic K, Nagashima Y, Akitaya T, Shimada H: Matrilysin is associated with progression of colorectal tumor. Cancer Lett 107: 5–10, 1996

    Google Scholar 

  110. Ohtani H, Motohashi H, Sato HMS, Nagura H: Dual over-expression pattern of membrane-type metalloproteinase-1 in cancer and stromal cells in human gastrointestinal carcinoma revealed by in situ hybridization and immunoelectron microscopy. Int J Cancer 68: 565–570, 1996

    Google Scholar 

  111. Porte H, Chastre E, Prevot S, Nordlinger B, Empereur S, Basset P, Chambon P, Gespach C: Neoplastic progression of human colorectal cancer is associated with overexpression of the stromelysin-3 and BM-40/SPARC genes. Int J Cancer 64: 70–75, 1995

    Google Scholar 

  112. Liabakk N-B, Talbot E, Smith RA, Wilkinson K, Balkwill F: Matrix Metalloproteinase 2 (MMP-2) and Matrix Metalloproteinase 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res 56: 190–196, 1996

    Google Scholar 

  113. Tomita T, Iwata K: Matrix metalloproteinases and tissue inhibitors of metalloproteinases in colonic adenomasadenocarcinomas. Dis Colon Rectum 39: 1255–1264, 1996

    Google Scholar 

  114. Gallegos NC, Smales C, Savage F, Hembry RM, Boulos PB: The distribution of matrix metalloproteinases and tissue inhibitor of metalloproteinases in colorectal cancer. Surg Oncology 4: 21–29, 1995

    Google Scholar 

  115. Oba K, Konno H, Tanaka T, Baba M, Kamiya K, Ohta M, Kaneko T, Shouji T, Igarashi A, Nakamura S: Prevention of liver metastasis of human colon cancer by selective matrix metalloproteinase inhibitor MMI-166. Cancer Lett 175: 45–51, 2002

    Google Scholar 

  116. Ohta M, Konno H, Tanaka T, Baba M, Kamiya K, Oba K, Kaneko T, Syouji T, Igarashi A, Nakamura S: Effect of combination therapy with matrix metalloproteinase inhibitor MMI-166 and mitomycin C on the growth and liver metastasis of human colon cancer. Jpn J Cancer Res 92: 688–695, 2001

    Google Scholar 

  117. Matsuoka T, Yashiro M, Sawada T, Ishikawa T, Ohira M, Chung KH: Inhibition of invasion and lymph node metastasis of gastrointestinal cancer cells by R-94138, a matrix metalloproteinase inhibitor. Anticancer Res 20: 4331–4338, 2000

    Google Scholar 

  118. An Z, Wang X, Willmott N, Chander SK, Tickle S, Docherty AJP: Conversion of a highly malignant colon cancer from an aggressive to a controled disease by oral administration of a metalloproteinase inhibitor. Clin Exp Metastasis 15: 184–195, 1997

    Google Scholar 

  119. Primrose J, Bleiberg H, Daniel F, Van Belle S, Mansi JL, Seymour M, Johnson PW, Neoptelemos JP, Baillet M, Barker K, Berrington A, Brown PD, Millar A, Lynch KP: Marimastat in recurrent colorectal cancer: Exploratory evaluation of biological activity by measurement of carcinoembryonic antigen. Br J Cancer 79: 509–514, 1999

    Google Scholar 

  120. Heppner Gross KJ, Brown PD, Matrisian LM: Differing effects of endogenos and synthetic inhibitors of metalloproteinases on intestinal tumorigenesis. Int J Cancer 78: 629–635, 1998

    Google Scholar 

  121. Aparicio T, Kermorgant S, Dessirier V, Lewin MJ, Lehy T: Matrix metalloproteinase inhibition prevents colon cancer peritoneal carcinomatosis development and prolongs survival in rats. Carcinogenesis 20: 1445–1451, 1999

    Google Scholar 

  122. Shalinsky DR, Brekken J, Zou H, McDermott CD, Forsyth P, Edwards D, Margosiak S, Bender S, Truitt G, Wood A, Varki NM, Appelt K: Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. In R Greenwald, S Zucker, L Golub, eds. Ann NY Acad Sci 878: 236–270, 1999

  123. Lozonschi L, Sunamura M, Kobari M, Egawa S, Ding L, Matsuno S: Controlling tumor angiogenesis and metastasis of C26 murine colon adenocarcinoma by a new matrix metalloproteinase inhibitor, KB-R7785, in two tumor models. Cancer Res 59: 1252–1258, 1999

    Google Scholar 

  124. Sakukawa R, Murakami K, Ikeda T, Yamada Y, Saiki I: Effect of 4-[3,5-bis(trimethylsilyl)benzamido] benzoic acid (TAC101) on the liver metastasis of colon 26-L5 carcinoma cells. Oncol Res 10: 287–293, 1998

    Google Scholar 

  125. Miyazaki K, Koshikawa N, Hasegawa S, Momiyama N, Nagashima Y, Moriyama K, Ichikawa Y, Ishikawa T, Mitsuhashi M, Shimada H: Matrilysin as a target for chemotherapy for colon cancer: Use of antisense oligonucleotides as antimetastatic agents. Cancer Chemother Pharmacol 43: S52–55, 1999

    Google Scholar 

  126. Adachi Y, Itoh F, Yamamoto H, Iku S, Matsuno K, Arimura Y, Imai K: Retinoic acids reduce matrilysin (matrix metalloproteinase 7) and inhibit tumor cell invasion in human colon cancer. tumor Biol 22: 247–253, 2001

    Google Scholar 

  127. Tanaka H, Nishida K, Sugita K, Yoshioka T: Antitumor efficacy of hypothemycin, a new Ras-signaling inhibitor. Jpn J Cancer Res 90: 1139–1145, 1999

    Google Scholar 

  128. Gu Y, Lee HM, Roemer EJ, Musacchia L, Golub LM, Simon SR: Inhibition of tumor cell invasiveness by chemically modified tetracyclines. Curr Med Chem 8: 261–270, 2001

    Google Scholar 

  129. Brand K, Baker A, Perez-Canto A, Possling A, Sacharjat M, Geheeb M, Arnold W: Treatment of colorectal liver metastasis by adenoviral transfer of tissue inhibitor of metalloproteinase-2 into the liver tissue. Cancer Res 60: 5723–5730, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Zucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zucker, S., Vacirca, J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 23, 101–117 (2004). https://doi.org/10.1023/A:1025867130437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025867130437

Navigation