Skip to main content
Log in

Direct Measurement of Peptide-Specific CD8+ T Cells Using HLA-A2:Ig Dimer for Monitoring the In Vivo Immune Response to a HER2/neu Vaccine in Breast and Prostate Cancer Patients

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

HER2/neu is a proto-oncogene and a member of the epidermal growth factor receptor family of proteins that is overexpressed in numerous types of human cancer. We are currently conducting clinical trials with the HER2/neu E75 peptide vaccine in breast and prostate cancer patients. We have evaluated the use of HLA-A2 dimer molecule for the immunological monitoring of cancer patients receiving the E75 peptide vaccine. Peripheral blood samples from patients receiving the vaccine were stained with HLA-A2 dimers containing the vaccine peptide E75 or control peptides and analyzed by flow cytometry. We compared the HLA-A2 dimer assay to standard methods of immunologic monitoring (IFN-γ release, lymphocyte proliferation, and cytotoxicity). The HLA-A2 dimer assay was also compared with the HLA-A2 tetramer assay. E75 peptide-specific CD8 T cells were detected directly in the peripheral blood of patients by staining with E75-HLA-A2 dimers and CD8 antibodies. T cell cultures generated by repeated stimulations using E75 peptide-pulsed dendritic cells showed increased staining with E75-peptide loaded HLA-A2 dimers. Simultaneously analysis by the dimer assay and standard immunologic assays demonstrated that the dimer-staining assay correlated well with these methods of immunologic monitoring. A direct comparison using E75-specific HLA-A2 tetramers and HLA-A2 dimers for the detection of E75-specific CD8 T cells in peripheral blood showed comparable results with the two assays. Our findings indicate that the HLA-A2 dimer is a powerful new tool for directly quantifying and monitoring immune responses of antigen-specific T cells in peptide vaccine clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ: Breast and ovarian cancer-specific cytotoxic T lym-phocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci USA 92:432–436, 1995

    PubMed  Google Scholar 

  2. Disis ML, Schiffman K: Cancer vaccines targeting the HER2/neu oncogenic protein. Semin Oncol 28:12–20, 2001

    Google Scholar 

  3. McNeel DG, Knutson KL, Schiffman K, Davis DR, Caron D, Disis ML: Pilot study of an HLA-A2 peptide vaccine using flt3 ligand as a systemic vaccine adjuvant. J Clin Immunol 23:62–72, 2003

    PubMed  Google Scholar 

  4. Disis ML, Rinn K, Knutson KL, Davis D, Caron D, Dela RC, Schiffman K: Flt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neu-overexpressing cancers. Blood 99:2845–2850, 2002

    PubMed  Google Scholar 

  5. Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Schiffman K: Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20:2624–2632, 2002

    PubMed  Google Scholar 

  6. Murray JL, Gillogly ME, Przepiorka D, Brewer H, Ibrahim NK, Booser DJ, Hortobagyi GN, Kudelka AP, Grabstein KH, Cheever MA, Ioannides CG: Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369-377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2 C patients with metastatic breast and ovarian cancer. Clin Cancer Res 8:3407–3418, 2002

    PubMed  Google Scholar 

  7. Morse MA, Clay TM, Colling K, Hobeika A, Grabstein K, Cheever MA, Lyerly HK: HER2 dendritic cell vaccines. Clin Breast Cancer 3(Suppl 4):S164–S172, 2003

    PubMed  Google Scholar 

  8. Clay TM, Hobeika AC, Mosca PJ, Lyerly HK, Morse MA: Assays for monitoring cellular immune responses to active immunotherapy of cancer. Clin Cancer Res 7:1127–1135, 2001

    PubMed  Google Scholar 

  9. Walker EB, Disis ML: Monitoring immune responses in cancer pa-tients receiving tumor vaccines. Int Rev Immunol 22:283–319, 2003

    PubMed  Google Scholar 

  10. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM: Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94–96, 1996

    Google Scholar 

  11. Smith JW, Walker EB, Fox BA, Haley D, Wisner KP, Doran T, Fisher B, Justice L, Wood W, Vetto J, Maecker H, Dols A, Meijer S, Hu HM, Romero P, Alvord WG, Urba WJ: Adjuvant immunization of HLA-A2-positive melanoma patients with a modified gp100 pep-tide induces peptide-specific CD8 C T-cell responses. J Clin Oncol 21:1562–1573, 2003

    PubMed  Google Scholar 

  12. Meidenbauer N, Marienhagen J, Laumer M, Vogl S, Heymann J, Andreesen R, Mackensen A: Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J Immunol 170:2161–2169, 2003

    PubMed  Google Scholar 

  13. Falco DA, Nepomuceno RR, Krams SM, Lee PP, Davis MM, Salvatierra O, Alexander SR, Esquivel CO, Cox KL, Frankel LR, Martinez OM: Identification of Epstein-Barr virus-specific CD8 C T lymphocytes in the circulation of pediatric transplant recipients. Transplantation 74:501–510, 2002

    PubMed  Google Scholar 

  14. Kuzushima K, Hayashi N, Kudoh A, Akatsuka Y, Tsujimura K, Morishima Y, Tsurumi T: Tetramer-assisted identification and char-acterization of epitopes recognized by HLA A*2402-restricted Epstein-Barr virus-specific CD8+ T cells. Blood 101:1460–1468, 2003

    PubMed  Google Scholar 

  15. Buseyne F, Scott-Algara D, Porrot F, Corre B, Bellal N, Burgard M, Rouzioux C, Blanche S, Riviere Y: Frequencies of ex vivo-activated human immunodeficiency virus type 1-specific gamma-interferon-producing CD8+ T cells in infected children correlate positively with plasma viral load. J Virol 76:12414–12422, 2002

    PubMed  Google Scholar 

  16. Sun Y, Iglesias E, Samri A, Kamkamidze G, Decoville T, Carcelain G, Autran B: Asystematic comparison of methods to measure HIV-1 specific CD8 T cells. J Immunol Methods 272:23–34, 2003

    PubMed  Google Scholar 

  17. Keilholz U, Weber J, Finke JH, Gabrilovich DI, Kast WM, Disis ML, Kirkwood JM, Scheibenbogen C, Schlom J, Maino VC, Ly-erly HK, Lee PP, Storkus W, Marincola F, Worobec A, Atkins MB: Immunologic monitoring of cancer vaccine therapy: Results of a workshop sponsored by the Society for Biological Therapy. J Im-munother 25:97–138, 2002

    Google Scholar 

  18. Greten TF, Slansky JE, Kubota R, Soldan SS, Jaffee EM, Leist TP, Pardoll DM, Jacobson S, Schneck JP: Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19-specific CD8( + ) T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc Natl Acad Sci USA 95:7568–7573, 1998

    PubMed  Google Scholar 

  19. Nagai M, Kubota R, Greten TF, Schneck JP, Leist TP, Jacobson S: In-creased activated human T cell lymphotropic virus type I (HTLV-I) Tax11-19-specific memory and effector CD8 + cells in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis: corre-lation with HTLV-I provirus load. J Infect Dis 183:197–205, 2001

    PubMed  Google Scholar 

  20. Greten TF, Korangy F, Neumann G, Wedemeyer H, Schlote K, Heller A, Scheffer S, Pardoll DM, Garbe AI, Schneck JP, Manns MP: Peptide-beta2-microglobulin-MHC fusion molecules bind antigen-specific T cells and can be used for multivalent MHC-Ig complexes. J Immunol Methods 271:125–135, 2002

    PubMed  Google Scholar 

  21. Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP: Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med 9:619–625, 2003

    PubMed  Google Scholar 

  22. Berlyn KA, Ponniah S, Stass SA, Malone JG, Hamlin-Green G, Lim JK, Cottler-Fox M, Tricot G, Alexander RB, Mann DL, Malone RW: Developing dendritic cell polynucleotide vaccination for prostate cancer immunotherapy. J Biotechnol 73:155–179, 1999

    PubMed  Google Scholar 

  23. Ponniah S, Arah I, Alexander RB: PSA is a candidate self-antigen in autoimmune chronic prostatitis/chronic pelvic pain syndrome. Prostate 44:49–54, 2000

    PubMed  Google Scholar 

  24. Henderson RA, Michel H, Sakaguchi K, Shabanowitz J, Appella E, Hunt DF, Engelhard VH: HLA-A2.1-associated peptides from a mutant cell line: A second pathway of antigen presentation. Science 255:1264–1266, 1992

    PubMed  Google Scholar 

  25. Morse MA, Clay TM, Hobeika AC, Mosca PJ, Lyerly HK: Surrogate markers of response to cancer immunotherapy. Expert Opin Biol Ther 1:153–158, 2001

    PubMed  Google Scholar 

  26. Bieganowska K, Hollsberg P, Buckle GJ, Lim DG, Greten TF, Schneck J, Altman JD, Jacobson S, Ledis SL, Hanchard B, Chin J, Morgan O, Roth PA, Hafler DA: Direct analysis of viral-specific CD8+ T cells with soluble HLA-A2/Tax11-19 tetramer com-plexes in patients with human T cell lymphotropic virus-associated myelopathy. J Immunol 162:1765–1771, 1999

    PubMed  Google Scholar 

  27. Kuerer HM, Peoples GE, Sahin AA, Murray JL, Singletary SE, Castilleja A, Hunt KK, Gershenson DM, Ioannides CG: Axillary lymph node cellular immune response to HER-2/neu peptides in patients with carcinoma of the breast. J Interferon Cytokine Res 22:583–592, 2002

    PubMed  Google Scholar 

  28. Brossart P, Heinrich KS, Stuhler G, Behnke L, Reichardt VL, Stevanovic S, Muhm A, Rammensee HG, Kanz L, Brugger W: Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 93:4309–4317, 1999

    PubMed  Google Scholar 

  29. Bernhard H, Salazar L, Schiffman K, Smorlesi A, Schmidt B, Knutson KL, Disis ML: Vaccination against the HER-2/neu onco-genic protein. Endocr Relat Cancer 9:33–44, 2002

    PubMed  Google Scholar 

  30. Buteau C, Markovic SN, Celis E: Challenges in the development of effective peptide vaccines for cancer. Mayo Clin Proc 77:339–349, 2002

    PubMed  Google Scholar 

  31. Weber JS, Mule JJ: How much help does a vaccine-induced T-cell response need? J Clin Invest 107:553–554, 2001

    PubMed  Google Scholar 

  32. chimeric T-cell receptor-immunoglobulin protein. Proc Natl Acad Sci USA 84:2936–2940, 1987

  33. Klenerman P, Cerundolo V, Dunbar PR: Tracking T cells with tetramers: New tales from new tools. Nat Rev Immunol 2:263–272, 2002

    PubMed  Google Scholar 

  34. Greten TF, Schneck JP: Development and use of multimeric major histocompatibility complex molecules. Clin Diagn Lab Immunol 9:216–220, 2002

    PubMed  Google Scholar 

  35. Bodinier M, Peyrat MA, Tournay C, Davodeau F, Romagne F, Bonneville M, Lang F: Efficient detection and immunomagnetic sorting of specific T cells using multimers of MHC class I and pep-tide with reduced CD8 binding. Nat Med 6:707–710, 2000

    PubMed  Google Scholar 

  36. Schneck JP: Monitoring antigen-specific T cells using MHC-Ig dimers. Immunol Invest 29:163–169, 2000

    PubMed  Google Scholar 

  37. Feuerer M, Beckhove P, Bai L, Solomayer EF, Bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V, Umansky V: Therapy of human tumors in NOD/SCID mice with patient-derived re-activated memory T cells from bone marrow. Nat Med 7:452–458, 2001

    PubMed  Google Scholar 

  38. Rubio-Godoy V, Dutoit V, Rimoldi D, Lienard D, Lejeune F, Speiser D, Guillaume P, Cerottini JC, Romero P, Valmori D: Discrepancy between ELISPOT IFN-gamma secretion and binding of A2/peptide multimers to TCR reveals interclonal dissociation of CTL effector function from TCR-peptide/MHC complexes half-life. Proc Natl Acad Sci USA 98:10302–10307, 2001

    PubMed  Google Scholar 

  39. Lim DG, Bieganowska BK, Freeman GJ, Hafler DA: Examination of CD8+ T cell function in humans using MHC class I tetramers: Similar cytotoxicity but variable proliferation and cytokine produc-tion among different clonal CD8 +T cells specific to a single viral epitope. J Immunol 165:6214–6220, 2000

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woll, M.M., Fisher, C.M., Ryan, G.B. et al. Direct Measurement of Peptide-Specific CD8+ T Cells Using HLA-A2:Ig Dimer for Monitoring the In Vivo Immune Response to a HER2/neu Vaccine in Breast and Prostate Cancer Patients. J Clin Immunol 24, 449–461 (2004). https://doi.org/10.1023/B:JOCI.0000029117.10791.98

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCI.0000029117.10791.98

Navigation