Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A causal role for E-cadherin in the transition from adenoma to carcinoma

Abstract

Development of malignant tumours is in part characterized by the ability of a tumour cell to overcome cell–cell adhesion and to invade surrounding tissue. E-cadherin is the main adhesion molecule of epithelia1,2,3 and it has been implicated in carcinogenesis because it is frequently lost in human epithelial cancers4,5,6. Re-establishing the functional cadherin complex in tumour cell lines results in a reversion from an invasive to a benign epithelial phenotype7. However, it remained unresolved whether the loss of E-cadherin-mediated cell adhesion was a cause or a consequence of tumour progression in vivo. Here we report that the loss of E-cadherin expression coincides with the transition from well differentiated adenoma to invasive carcinoma in a transgenic mouse model of pancreatic β-cell carcinogenesis (Rip1Tag2)8. Intercrossing Rip1Tag2 mice with transgenic mice that maintain E-cadherin expression in β-tumour cells results in arrest of tumour development at the adenoma stage, whereas expression of a dominant-negative form of E-cadherin induces early invasion and metastasis. The results demonstrate that loss of E-cadherin-mediated cell adhesion is one rate-limiting step in the progression from adenoma to carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histopathological and immunohistochemical analyses of tumorigenesis.
Figure 2: Expression of epithelial markers during the transition from β-cell adenoma to carcinoma in Rip1Tag2 transgenic mice.
Figure 3: Forced expression of E-cadherin blocks the transition from adenoma to carcinoma.
Figure 4: Forced expression of dominant-negative E-cadherin induces tumour-cell invasion and metastasis.

Similar content being viewed by others

References

  1. Geiger, B. & Ayalon, O. Cadherins. Annu. Rev. Cell Biol. 8, 307–332 (1992).

    Article  CAS  Google Scholar 

  2. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619–627 ((1995)).

    Article  CAS  Google Scholar 

  3. Aberle, H., Schwartz, H. & Kemler, R. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J. Cell. Biochem. 61, 514–523 (1996).

    Article  CAS  Google Scholar 

  4. Birchmeier, W., Weidner, K. M., Hülsken, J. & Behrens, J. Molecular mechanisms leading to cell junction (cadherin) deficiency in invasive carcinomas. Sem. Cancer Biol. 4, 231–218 (1993).

    CAS  Google Scholar 

  5. Takeichi, M. Cadeherins in cancer: implications for invasion and metastasis. Curr. Opin. Cell Biol. 5, 806–811 (1993).

    Article  CAS  Google Scholar 

  6. Birchmeier, W. & Behrens, J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim. Biophys. Acta 1198, 11–26 (1994).

    CAS  PubMed  Google Scholar 

  7. Vleminckx, K., Vakaet, L., Mareel, M., Fiers, W. & Van Roy, F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66, 107–119 (1991).

    Article  CAS  Google Scholar 

  8. Hanahan, D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian 40 oncogenes. Nature 315, 115–122 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Teitelman, G., Alpert, S. & Hanahan, D. Proliferation, senescence, and neoplastic progression of β cells in hyperplasic pancreatic islets. Cell 52, 97–105 (1988).

    Article  CAS  Google Scholar 

  10. Christofori, G., Naik, P. & Hanahan, D. Asecond signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 369, 414–418 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Christofori, G., Naik, P. & Hanahan, D. Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorigenesis. Mol. Endocrinol. 9, 1760–1770 ((1995)).

    CAS  PubMed  Google Scholar 

  13. Hutton, J. C. et al. Molecular cloning of mouse pancreatic islet R-cadherin: differential expression in endocrine and exocrine tissue. Mol. Endocrinol. 7, 1151–1160 (1993).

    CAS  PubMed  Google Scholar 

  14. Dahl, U., Sjödin, A. & Semb, H. Cadherins regulate aggregation of pancreatic β-cells in vivo. Development 122, 2895–2902 (1996).

    CAS  PubMed  Google Scholar 

  15. Huber, O., Bierkamp, C. & Kemler, R. Cadherins and catenins in development. Curr. Opin. Cell Biol. 8, 685–691 (1996).

    Article  CAS  Google Scholar 

  16. Miller, J. R. & Moon, R. T. Signal transduction through β-catenin and specification of cell fate during embryogenesis. Genes Dev. 10, 2527–2539 (1996).

    Article  CAS  Google Scholar 

  17. Gumbiner, B. M. Carcinogenesis: a balance between β-catenin and APC. Curr. Biol. 7, 443–446 ((1997)).

    Article  Google Scholar 

  18. Molenaar, M. et al. XTcf-3 transcriptin factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  19. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Huber, O. et al. Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59, 3–10 (1996).

    Article  CAS  Google Scholar 

  21. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  Google Scholar 

  22. Morin, P. J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  Google Scholar 

  23. Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).

    Article  CAS  Google Scholar 

  24. Hennig, G., Löwrick, O., Birchmeier, W. & Behrens, J. Mechanisms identified in the transcriptional control of epithelial gene expression. J. Biol. Chem. 271, 595–602 (1996).

    Article  CAS  Google Scholar 

  25. Yoshiura, K. et al. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc. Natl Acad. Sci. USA 92, 7416–7419 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Graff, J. R. et al. E-cadherin expression is silenced by hypermethylation in human breast and prostate carcinomas. Cancer Res. 55, 5195–5199 (1995).

    CAS  PubMed  Google Scholar 

  27. Hogan, B. L. M., Constantini, F. & Lacey E. Manipulating the Mouse Embryo: a Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, (1986)).

    Google Scholar 

  28. Naik, P., Karrim, J. & Hanahan, D. The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes Dev. 10, 2105–2116 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Hanahan and R. Kelly for support and discussions. We are grateful to W. Jochum for expertise in histopathology and M. Herzig and S. Luef for technical assistance. We thank M. Cotten, E. F. Wagner, H. Beug, K. Nasmyth and G. M. Lamm for critical comments on the manuscript. Animal care was in accordance with institutional guidelines. Supported in part by the Austrian Industrial Research Promotion Fund (A.-K.P., P. W., G.C.) and by the Swedish Cancer Society, Lion's Cancer Research Foundation, Umeå University and M. Gergvalls Stiftelse (U.D., H.S.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Christofori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perl, AK., Wilgenbus, P., Dahl, U. et al. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190–193 (1998). https://doi.org/10.1038/32433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32433

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing