Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Mammalian MAP kinase signalling cascades

Abstract

Mitogen-activated protein kinases (MAPKs) are important signal transducing enzymes, unique to eukaryotes, that are involved in many facets of cellular regulation. Initial research concentrated on defining the components and organization of MAPK signalling cascades, but recent studies have begun to shed light on the physiological functions of these cascades in the control of gene expression, cell proliferation and programmed cell death.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms for generation of specificity in MAPK activation and function.

Similar content being viewed by others

References

  1. English, J. et al. New insights into the control of MAP kinase pathways. Exp. Cell Res. 253, 255–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Gutkind, S. J. Regulation of mitogen-activated protein kinase signalling networks by G-protein coupled receptors [online] http://www.stke.org/cgi/content/full/OC_sigtrans;2000/40/re1 (2000).

  3. Herskowitz, I. MAP kinase pathways in yeast: for mating and more. Cell 80, 187–197 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Xia, Y. et al. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc. Natl Acad. Sci. USA 97, 5243–5248 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yujiri, T., Sather, S., Fanger, C. R. & Johnson, G. L. Role of MEKK1 in cell survival and activation of JNK and ERK pathways defined by targeted gene disruption. Science 282, 1911–1914 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Whitmarsh, A. J., Cavanagh, J., Tournier, C., Yasuda, J. & Davis, R. J. A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281, 1671–1674 (1999).

    Article  ADS  Google Scholar 

  7. Schaeffer, H. J. et al. MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281, 1668–1671 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Xia, Y., Wu, Z., Su, B., Murray, B. & Karin, M. JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev. 12, 3369–3381 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wasserman, J. D. & Matthew, F. An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell 95, 355–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Kallunki, T., Deng, T., Hibi, M. & Karin, M. c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell 87, 929-939 (1996).

    Article  Google Scholar 

  11. Tanoue, T., Adachi, M., Moriguchi, T. & Nishida, E. A conserved docking motif in MAP kinase common to substrates, activators and regulators. Nature Cell Biol. 2, 110–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Treisman, R. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8, 205–215 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Han, J., Jiang, Y., Li, Z., Kravchenko, V. V. & Ulevitch, R. J. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296–299 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Chen, C. Y. et al. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev. 14, 1236–1248 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Winzen, R. et al. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J. 19, 6742–6753 (1999).

    Google Scholar 

  16. Lasa, M. et al. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol. Cell. Biol. 20, 4265–4274 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kotlyarov, A. et al. MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nature Cell Biol. 1, 94–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Pyronnet, S. et al. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J. 18, 270–279 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graves, L. M. et al. Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature 403, 328–332 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Palmer, A., Gavin, A. C. & Nebreda, A. R. A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Myt1. EMBO J. 17, 5037–5047 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhatt, R. R. & Ferrell, J. E. J. The protein kinase p90 rsk as an essential mediator of cytostatic factor activity. Science 286, 1362–1365 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Gross, S. D., Schwab, M. S., Lewellyn, A. L. & Maller, J. L. Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science 286, 1365–1367 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Treinies, I., Paterson, H. F., Hooper, S., Wilson, R. & Marshall, C. J. Activated MEK stimulates expression of AP-1 components independently of phosphatidylinositol 3-kinase (PI3-kinase) but requires a PI3-kinase signal To stimulate DNA synthesis. Mol. Cell. Biol. 19, 321–329 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Minden, A. et al. Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266, 1719–1723 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Sabapathy, K. et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 9, 116–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. & Greenberg, M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Le-Niculescu, H. et al. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol. Cell. Biol. 19, 751–763 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, D. et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865–870 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Behrens, A., Sibilia, M. & Wagner, E. F. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nature Genet. 21, 326–329 (1999).

    CAS  PubMed  Google Scholar 

  30. Xu, X., Raber, J., Yang, D., Su, B. & Mucke, L. Dynamic regulation of c-Jun N-terminal kinase activity in mouse brain by environmental stimuli. Proc. Natl Acad. Sci. USA 94, 12655–12660 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tournier, C. et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870–874 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Shaulian, E. et al. The mammalian UV response: c-Jun induction is required for exit from the p53-imposed checkpoint. Cell 103, 897–907 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Kauffmann-Zeh, A. et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI (3)K and PKB. Nature 385, 544–548 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Pagès, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286, 1374–1377 (1999).

    Article  PubMed  Google Scholar 

  36. Alberola-Ila, J., Forbush, K. A., Seger, R., Krebs, E. G. & Perlmutter, R. M. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620–623 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Giroux, S. et al. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol. 9, 369–372 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Kuan, C. Y. et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Sabapathy, K. et al. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech. Dev. 89, 115–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Ganiatsas, S. et al. SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc. Natl Acad. Sci. USA 95, 6881–6886 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hilberg, F., Aguzzi, A., Howells, N. & Wagner, E. F. c-Jun is essential for normal mouse development and hepatogenesis. Nature 365, 179–181 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Su, B. et al. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77, 727–736 (1994).

    Article  PubMed  Google Scholar 

  43. Li, W., Whaley, C. D., Mondino, A. & Mueller, D. L. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science 271, 1272–1276 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Sabapathy, K. et al. JNK1 and JNK2 have similar and stage-dependent roles in regulating T cell apoptosis and proliferation. J. Exp. Med. 193, 317–318 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nishina, H. et al. Impaired CD28-mediated interleukin 2 production and proliferation in stress kinase SAPK/ERK1 kinase (SEK1)/mitogen-activated protein kinase kinase 4 (MKK4)-deficient T lymphocytes. J. Exp. Med. 186, 941–953 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science 282, 2092–2095 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Yang, D. D. et al. Differentiation of CD4(+) T cells to Th1 cells requires MAP kinase JNK2. Immunity 9, 575–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Dong, C. et al. JNK is required for effector T-cell function but not for T-cell activation. Nature 405, 91–94 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Swat, W. et al. SEK1/MKK4 is required for maintenance of a normal peripheral lymphoid compartment but not for lymphocyte development. Immunity 8, 625–634 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Tamura, K. et al. Requirement for p38α in erythropoietin expression: A role for stress kinases in erythropoiesis. Cell 102, 221–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Adams, R. H. et al. Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol. Cell 6, 109–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Lu, H. T. et al. Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J. 18, 1845–1857 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Cobb and E. Wagner for suggestions and criticism. M.K. is an American Cancer Society Research Professor; work in his lab is supported by the NIH and State of California Cancer Research Program. L.C. is supported by a NIH postdoctoral fellowship. Our apologies to those whose work was not cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Karin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, L., Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001). https://doi.org/10.1038/35065000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing