Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natural killer cells, viruses and cancer

Key Points

  • Natural killer (NK) cell function (cytotoxic activity and cytokine secretion) is regulated by a balance of signals transmitted by opposing activating and inhibitory receptors.

  • Activating NK cell receptors use transmembrane adaptor proteins such as FcɛRIγ, CD3ζ and DAP12 to stimulate the ZAP70 and Syk tyrosine kinase pathways, and another transmembrane adaptor protein DAP10 to activate the phosphatidylinositol 3-kinase pathway.

  • The activating NKG2D receptor binds to human major histocompatibility complex (MHC) class-I-chain-related A (MICA) and MICB proteins, encoded by genes within the MHC, and to glycoproteins that represent orthologues of the mouse retinoic acid early inducible (RAE-1) molecules.

  • NK cells kill tumours expressing the MIC or RAE-1 ligands of the NKG2D receptor, even when the tumours express MHC class I molecules that are recognized by the inhibitory NK cell receptors.

  • A role of NK cells in anti-viral immunity has been demonstrated most convincingly in protection against cytomegalovirus and other herpesviruses.

  • Infection with human cytomegalovirus induces expression of MIC proteins, ligands of the activating NKG2D receptor.

  • The mouse activating Ly49H receptor has been implicated in host resistance to mouse cytomegalovirus.

  • Cytomegalovirus encodes several proteins that bind to MHC class I and MIC that might inhibit recognition by T cells and NK cells.

Abstract

Natural killer cells are innate immune cells that control certain microbial infections and tumours. The function of natural killer cells is regulated by a balance between signals transmitted by activating receptors, which recognize ligands on tumours and virus-infected cells, and inhibitory receptors specific for major histocompatibility complex class I molecules. Here, we review the emerging evidence that natural killer cells have an important role in vivo in immune defence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activating NK receptor complexes.
Figure 2: NKG2D ligands and HCMV.
Figure 3: Ly49H and mouse cytomegalovirus (MCMV).
Figure 4: NKG2D ligands in innate tumour surveillance.

Similar content being viewed by others

References

  1. Trinchieri, G. Biology of natural killer cells. Adv. Immunol. 47, 187–376 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smyth, M. J., Godfrey, D. I. & Trapani, J. A. A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunol. 2, 293–299 (2001).Recent review summarizing evidence for tumour immunosurveillance and the role of natural killer cells and T cells.

    CAS  Google Scholar 

  3. Kärre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature 319, 675–678 (1986).

    PubMed  Google Scholar 

  4. Moretta, A. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 19, 197–223 (2001).A comprehensive review of the NKp30, NKp44 and NKp46 receptors and their potential role in tumour recognition.

    CAS  PubMed  Google Scholar 

  5. Long, E. O. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17, 875–904 (1999).

    CAS  PubMed  Google Scholar 

  6. Ravetch, J. V. & Lanier, L. L. Immune inhibitory receptors. Science 290, 84–89 (2000).A comprehensive review of the inhibitory immune receptors, including the MHC class I receptors that regulate natural killer cells and T-cell activation.

    CAS  PubMed  Google Scholar 

  7. Leiden, J. M., Karpinski, B. A., Gottschalk, L. & Kornbluth, J. Susceptibility to natural killer cell-mediated cytolysis is independent of the level of target cell class I HLA expression. J. Immunol. 142, 2140–2147 (1989).

    CAS  PubMed  Google Scholar 

  8. Nishimura, M. I., Stroynowski, I., Hood, L. & Ostrand-Rosenberg, S. H-2Kb antigen expression has no effect on natural killer susceptibility and tumorigenicity of a murine hepatoma. J. Immunol. 141, 4403–4409 (1988).

    CAS  PubMed  Google Scholar 

  9. Pena, J. et al. Natural killer susceptibility is independent of HLA class I antigen expression on cell lines obtained from human solid tumors. Eur. J. Immunol. 20, 2445–2449 (1990).

    CAS  PubMed  Google Scholar 

  10. Litwin, V., Gumperz, J., Parham, P., Phillips, J. H. & Lanier, L. L. Specificity of HLA class I antigen recognition by human NK clones: evidence for clonal heterogeneity, protection by self and non-self alleles, and influence of the target cell type. J. Exp. Med. 178, 1321–1336 (1993).

    CAS  PubMed  Google Scholar 

  11. Lanier, L. L. On guard — activating NK cell receptors. Nature Immunol. 2, 23–27 (2001).

    CAS  Google Scholar 

  12. Moretta, L. et al. Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J. Exp. Med. 182, 875–884 (1995).

    CAS  PubMed  Google Scholar 

  13. Smith, K. M., Wu, J., Bakker, A. B. H., Phillips, J. H. & Lanier, L. L. Ly49D and Ly49H associate with mouse DAP12 and form activating receptors. J. Immunol. 161, 7–10 (1998).

    CAS  PubMed  Google Scholar 

  14. Perussia, B. et al. The Fc receptor for IgG on human natural killer cells: phenotypic, functional, and comparative studies with monoclonal antibodies. J. Immunol. 133, 180–189 (1984).

    CAS  PubMed  Google Scholar 

  15. Mandelboim, O. et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409, 1055–1060 (2001).Evidence that the activating natural killer cell receptor NKp46 is involved in anti-viral immunity.

    CAS  PubMed  Google Scholar 

  16. Tomasello, E. et al. Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity 13, 355–364 (2000).

    CAS  PubMed  Google Scholar 

  17. Vitale, M. et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J. Exp. Med. 187, 2065–2072 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pessino, A. et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J. Exp. Med. 188, 953–960 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sivori, S. et al. NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur. J. Immunol. 29, 1656–1666 (1999).

    CAS  PubMed  Google Scholar 

  20. Cantoni, C. et al. NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. J. Exp. Med. 189, 787–796 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pende, D. et al. Identification and molecular characterization of NKP30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J. Exp. Med. 190, 1505–1516 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Moretta, A., Biassoni, R., Bottino, C., Mingari, M. C. & Moretta, L. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis. Immunol. Today 21, 228–234 (2000).

    CAS  PubMed  Google Scholar 

  23. Houchins, J. P., Yabe, T., McSherry, C. & Bach, F. H. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J. Exp. Med. 173, 1017–1020 (1991).

    CAS  PubMed  Google Scholar 

  24. Bauer, S. et al. Activation of natural killer cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–730 (1999).Shows that the NKG2D receptor binds to the stress-induced MIC molecules and activates natural killer cells.

    CAS  PubMed  Google Scholar 

  25. Wu, J. et al. An activating receptor complex on natural killer and T cells formed by NKG2D and DAP10. Science 285, 730–732 (1999).Shows that the NKG2D receptor signals through a transmembrane adaptor molecule activating the phosphatidylinositol 3-kinase pathway.

    CAS  PubMed  Google Scholar 

  26. Wu, J., Cherwinski, H., Spies, T., Phillips, J. H. & Lanier, L. L. DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natural killer cells. J. Exp. Med. 192, 1059–1068 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilson, M. J., Lindquist, J. A. & Trowsdale, J. DAP12 and KAP10 (DAP10) — novel transmembrane adapter proteins of the CD3ζ family. Immunol. Res. 22, 21–42 (2000).

    CAS  PubMed  Google Scholar 

  28. Li, P. et al. Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nature Immunol. 2, 443–451 (2001).Structure of the NKG2D receptor complexed with the MICA ligand.

    CAS  Google Scholar 

  29. Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl Acad. Sci. USA 93, 12445–12450 (1996).Reports that the MIC genes are regulated by stress and that MIC-bearing cells are recognized by γδ-TcR+ T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).MICA and MICB are overexpressed on primary human tumours, providing targets for the immune system.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bahram, S. MIC genes: from genetics to biology. Adv. Immunol. 76, 1–60 (2000).

    CAS  PubMed  Google Scholar 

  32. Cosman, D. et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123–133 (2001).Identifies a viral glycoprotein encoded by human cytomegalovirus that binds to MICB and orthologues of the mouse RAE-1 antigens.

    CAS  PubMed  Google Scholar 

  33. Nomura, M., Takihara, Y. & Shimada, K. Isolation and characterization of retinoic acid-inducible cDNA clones in F9 cells: one of the early inducible clones encodes a novel protein sharing several highly homologous regions with a Drosophila polyhomeotic protein. Differentiation 57, 39–50 (1994).

    CAS  PubMed  Google Scholar 

  34. Malarkannan, S. et al. The molecular and functional characterization of a dominant minor H antigen, H60. J. Immunol. 161, 3501–3509 (1998).

    CAS  PubMed  Google Scholar 

  35. Choi, E. Y. et al. Quantitative analysis of the immune response to mouse non-MHC transplantation antigens in vivo: the H60 histocompatibility antigen dominates over all others. J. Immunol. 166, 4370–4379 (2001).

    CAS  PubMed  Google Scholar 

  36. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    CAS  PubMed  Google Scholar 

  37. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).References 36 and 37 show that the mouse NKG2D receptor binds to the RAE-1 family of proteins and the H60 minor histocompatibility antigen.

    CAS  Google Scholar 

  38. Lanier, L. L., Corliss, B. & Phillips, J. H. Arousal and inhibition of human NK cells. Immunol. Rev. 155, 145–154 (1997).

    CAS  PubMed  Google Scholar 

  39. Biron, C. A., Byron, K. S. & Sullivan, J. L. Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med. 320, 1731–1735 (1989).

    CAS  PubMed  Google Scholar 

  40. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    CAS  PubMed  Google Scholar 

  41. Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J. & Ploegh, H. L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).

    CAS  PubMed  Google Scholar 

  42. Fletcher, J. M., Prentice, H. G. & Grundy, J. E. Natural killer cell lysis of cytomegalovirus (CMV)-infected cells correlates with virally induced changes in cell surface lymphocyte function-associated antigen-3 (LFA-3) expression and not with the CMV-induced down-regulation of cell surface class I HLA. J. Immunol. 161, 2365–2374 (1998).

    CAS  PubMed  Google Scholar 

  43. Leong, C. C. et al. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: the role of endogenous class I MHC and a viral class I homolog. J. Exp. Med. 187, 1681–1687 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Siliciano, R. F., Pratt, J. C., Schmidt, R. E., Ritz, J. & Reinherz, E. L. Activation of cytolytic T lymphocyte and natural killer cell function through the T11 sheep erythrocyte binding protein. Nature 317, 428–430 (1985).

    CAS  PubMed  Google Scholar 

  45. Schmidt, R. E., Bartley, G., Levine, H., Schlossman, S. F. & Ritz, J. Functional characterization of LFA-1 antigens in the interaction of human NK clones and targets. J. Immunol. 135, 1020–1025 (1985).

    CAS  PubMed  Google Scholar 

  46. Timonen, T., Patarroyo, M. & Gahmberg, C. G. CD11a–c/CD18 and GP84 (LB-2) adhesion molecules on human large granular lymphocytes and their participation in natural killing. J. Immunol. 141, 1041–1046 (1988).

    CAS  PubMed  Google Scholar 

  47. Huard, B. & Fruh, K. A role for MHC class I down-regulation in NK cell lysis of herpes virus-infected cells. Eur. J. Immunol. 30, 509–515 (2000).

    CAS  PubMed  Google Scholar 

  48. Beck, S. & Barrell, B. G. Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature 331, 269–272 (1988).

    CAS  PubMed  Google Scholar 

  49. Fahnestock, M. L. et al. The MHC class I homolog encoded by human cytomegalovirus binds endogenous peptides. Immunity 3, 583–590 (1995).

    CAS  PubMed  Google Scholar 

  50. Farrell, H. E. et al. Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature 386, 510–514 (1997).

    CAS  PubMed  Google Scholar 

  51. Cretney, E. et al. m144, a murine cytomegalovirus (MCMV)-encoded major histocompatibility complex class I homologue, confers tumor resistance to natural killer cell-mediated rejection. J. Exp. Med. 190, 435–444 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cosman, D. et al. A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 7, 273–282 (1997).

    CAS  PubMed  Google Scholar 

  53. Chapman, T. L. & Bjorkman, P. J. Characterization of a murine cytomegalovirus class I major histocompatibility complex (MHC) homolog: comparison to MHC molecules and to the human cytomegalovirus MHC homolog. J. Virol. 72, 460–466 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chapman, T. L., Heikeman, A. P. & Bjorkman, P. J. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11, 603–613 (1999).

    CAS  PubMed  Google Scholar 

  55. Reyburn, H. T. et al. The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature 386, 514–517 (1997).

    CAS  PubMed  Google Scholar 

  56. Soderberg-Naucler, C., Fish, K. N. & Nelson, J. A. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91, 119–126 (1997).

    CAS  PubMed  Google Scholar 

  57. Hahn, G., Jores, R. & Mocarski, E. S. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc. Natl Acad. Sci. USA 95, 3937–3942 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tomasec, P. et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287, 1031–1033 (2000).Reports that the leader segment of human cytomegalovirus protein UL40 binds to human leukocyte antigen-E and protects cells from lysis by natural killer cells bearing the CD94/NKG2A inhibitory receptor.

    CAS  PubMed  Google Scholar 

  59. Zhu, H., Cong, J. P., Mamtora, G., Gingeras, T. & Shenk, T. Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95, 14470–14475 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B, and C. Nature 391, 795–798 (1998).

    CAS  PubMed  Google Scholar 

  61. Lee, N. et al. HLA-E is a major ligand for the NK inhibitory receptor CD94/NKG2A. Proc. Natl Acad. Sci. USA 95, 5199–5204 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brooks, A. G. et al. Specific recognition of HLA-E, but not classical, HLA class I molecules by soluble CD94/NKG2A and NK cells. J. Immunol. 162, 305–313 (1999).

    CAS  PubMed  Google Scholar 

  63. Braud, V., Jones, E. Y. & McMichael, A. The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur. J. Immunol. 27, 1164–1169 (1997).

    CAS  PubMed  Google Scholar 

  64. Kaye, J., Browne, H., Stoffel, M. & Minson, T. The UL16 gene of human cytomegalovirus encodes a glycoprotein that is dispensable for growth in vitro. J. Virol. 66, 6609–6615 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Steinle, A. et al. Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE1 protein family. Immunogenetics 53, 279–287 (2001).

    CAS  PubMed  Google Scholar 

  66. Groh, V. et al. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nature Immunol. 2, 255–260 (2001).MIC is induced by human cytomegalovirus-infected cells and this co-stimulates the effector functions of antigen-specific CD8+ cytotoxic T lymphocytes.

    CAS  Google Scholar 

  67. Bukowski, J. F., Warner, J. F., Dennert, G. & Welsh, R. M. Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J. Exp. Med. 161, 40–52 (1985).

    CAS  PubMed  Google Scholar 

  68. Welsh, R. M., Burbaker, J. O., Vargas-Cortes, M. & O'Donnell, C. L. Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell functions. J. Exp. Med. 173, 1053–1063 (1991).

    CAS  PubMed  Google Scholar 

  69. Scalzo, A. A., Fitzgerald, N. A., Simmons, A., La Vista, A. B. & Shellam, G. R. Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J. Exp. Med. 171, 1469–1483 (1990).

    CAS  PubMed  Google Scholar 

  70. Scalzo, A. A. et al. The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J. Immunol. 149, 581–589 (1992).

    CAS  PubMed  Google Scholar 

  71. Brown, M. G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937 (2001).

    CAS  PubMed  Google Scholar 

  72. Daniels, K. A. et al. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J. Exp. Med. 194, 29–44 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, H.-S. et al. Susceptibility to mouse cytomegalovirus is associated with depletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nature Genet. 28, 42–45 (2001).References 71–73 implicate the activating Ly49H natural killer cell receptor in resistance to mouse cytomegalovirus.

    CAS  PubMed  Google Scholar 

  74. Delano, M. L. & Brownstein, D. G. Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus-replication by cells with an NK phenotype. J. Virol. 69, 5875–5877 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pereira, R. A., Scalzo, A. & Simmons, A. Cutting edge: a NK complex-linked locus governs acute versus latent herpes simplex virus infection of neurons. J. Immunol. 166, 5869–5873 (2001).

    CAS  PubMed  Google Scholar 

  76. Bakker, A. B. H. et al. DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity 13, 345–353 (2000).

    CAS  PubMed  Google Scholar 

  77. Westgaard, I. H., Berg, S. F., Orstavik, S., Fossum, S. & Dissen, E. Identification of a human member of the Ly-49 multigene family. Eur. J. Immunol. 28, 1839–1846 (1998).

    CAS  PubMed  Google Scholar 

  78. Barten, R. & Trowsdale, J. The human Ly-49L gene. Immunogenetics 49, 731–734 (1999).

    CAS  PubMed  Google Scholar 

  79. Paloneva, J. et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nature Genet. 25, 357–361 (2000).

    CAS  PubMed  Google Scholar 

  80. Verloes, A. et al. Nasu–Hakola syndrome: polycystic lipomembranous osteodysplasia with sclerosing leucoencephalopathy and presenile dementia. J. Med. Genet. 34, 753–757 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cohen, G. B. et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10, 661–671 (1999).

    CAS  PubMed  Google Scholar 

  82. Coscoy, L. & Ganem, D. Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc. Natl Acad. Sci. USA 97, 8051–8056 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ishido, S., Wang, C., Lee, B. S., Cohen, G. B. & Jung, J. U. Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J. Virol. 74, 5300–5309 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Coscoy, L. & Ganem, D. A viral protein that selectively downregulates ICAM-1 and B7-2 and modulates T cell costimulation. J. Clin. Invest. 107, 1599–1606 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ishido, S. et al. Inhibition of natural killer cell-mediated cytotoxicity by Kaposi's sarcoma-associated herpesvirus K5 protein. Immunity 13, 365–374 (2000).

    CAS  PubMed  Google Scholar 

  86. Garni-Wagner, B. A., Purohit, A., Mathew, P. A., Bennett, M. & Kumar, K. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells. J. Immunol. 151, 60–70 (1993).

    CAS  PubMed  Google Scholar 

  87. Nakajima, H., Cella, M., Langen, H., Friedlein, A. & Colonna, M. Activating interactions in human NK cell recognition: the role of 2B4-CD48. Eur. J. Immunol. 29, 1676–1683 (1999).

    CAS  PubMed  Google Scholar 

  88. Tangye, S. G. et al. Human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP. J. Immunol. 162, 6981–6985 (1999).

    CAS  PubMed  Google Scholar 

  89. Boles, K. S. et al. Molecular characterization of a novel human natural killer cell receptor homologous to mouse 2B4. Tissue Antigens 54, 27–34 (1999).

    CAS  PubMed  Google Scholar 

  90. Sivori, S. et al. 2B4 functions as a co-receptor in human NK cell activation. Eur. J. Immunol. 30, 787–793 (2000).

    CAS  PubMed  Google Scholar 

  91. Brown, M. H. et al. 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48. J. Exp. Med. 188, 2083–2090 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Latchman, Y., McKay, P. F. & Reiser, H. Identification of the 2B4 molecule as a counter-receptor for CD48. J. Immunol. 161, 5809–5812 (1998).

    CAS  PubMed  Google Scholar 

  93. Kubin, M. Z. et al. Molecular cloning and biological characterization of NK cell activation-inducing ligand, a counterstructure for CD48. Eur. J. Immunol. 29, 3466–3477 (1999).

    CAS  PubMed  Google Scholar 

  94. Sayos, J. et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462–469 (1998).

    CAS  PubMed  Google Scholar 

  95. Tangye, S. G., Phillips, J. H., Lanier, L. L. & Nichols, K. E. Cutting edge: functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J. Immunol. 165, 2932–2936 (2000).

    CAS  PubMed  Google Scholar 

  96. Benoit, L., Wang, X., Pabst, H. F., Dutz, J. & Tan, R. Defective NK cell activation in X-linked lymphoproliferative disease. J. Immunol. 165, 3549–3553 (2000).

    CAS  PubMed  Google Scholar 

  97. Nakajima, H. et al. Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity. Eur. J. Immunol. 30, 3309–3318 (2000).

    CAS  PubMed  Google Scholar 

  98. Parolini, S. et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J. Exp. Med. 192, 337–346 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sayos, J. et al. Cell surface receptors Ly-9 and CD84 recruit the X-linked lymphoproliferative disease gene product SAP. Blood 97, 3867–3874 (2001).

    CAS  PubMed  Google Scholar 

  100. Bottino, C. et al. NTB-A, a novel SH2D1A-associated surface molecule contributing to the inability of natural killer cells to kill Epstein-Barr virus-infected B cells in X-linked lymphoproliferative disease. J. Exp. Med. 194, 235–246 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cerwenka, A., Baron, J. L. & Lanier, L. L. Ectopic expression of RAE-1 permits NK cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl Acad. Sci. USA (in the press).

  102. Pende, D. et al. Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur. J. Immunol. 31, 1076–1086 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health. We thank R. Welsh, W. Yokoyama, S. Bahram and R. Strong for helpful discussions and sharing unpublished manuscripts.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

LocusLink

CD2

CD3ζ

CD16

CD28

CD48

CD54

CD58

CD69

CD84

CD86

CD150

CD159a

CD244

Cmv1

DAP10

DAP12

H60

HLA-A

HLA-B

HLA-C

HLA-E

ICOS

IFN-α

IFN-β

IFN-γ

IL-2

IL-10

KIR

KIR2DS

LFA-1

LIR-1

Ly9

Ly49

Ly49H

lymphotoxin-α

lymphotoxin-β

MICA

MICB

NKG2D

NKp30

NKp44

NKp46

p52

Rae-1

SAP

SLAM

TAP

TGF-β

TNF-α

Tyrobp

ULBP1

ULBP2

ULBP3

OMIM

Nasu–Hakola disease

X-linked lymphoproliferative syndrome

FURTHER INFORMATION

AIDS Information & Research

Official List of Human MIC and HLA Antigens

Protein Reviews on the Web, the KIR Family

The World of Human Cytomegalovirus

Glossary

NATURAL KILLER T CELLS

(NKT cells). A subset of T lymphocytes expressing both NK and T-cell markers. In mice, NKT cells were first identified by their expression of the NK1.1 (NKR-P1C) alloantigen. Some mouse NKT cells express an invariant T-cell receptor (TCR) using the Vα14 variable region of the TCR-α chain and recognize CD1d-associated antigen. Similarly, human NKT cells express an invariant Vα24 receptor. NKT cells are characterized functionally by cytolytic activity and rapid production of cytokines, including IFN-γ and IL-4.

γδ-TCR+ T CELLS

T lymphocytes express either a T-cell receptor (TCR) composed of either α- and β-subunits (αβ-TCR) or a TCR composed of γ- and δ-subunits (γδ-TCR). Most (>90%) T cells have a αβ-TCR that recognizes conventional MHC class I or II ligands. T cells expressing γδ-TCR are less frequent and the ligands of this type of receptor are less well characterized.

UL16-BINDING PROTEINS

(ULBP). A family of human glycoproteins with homology to MHC class I that was discovered by their ability to bind to UL16, a protein encoded by human cytomegalovirus. The ULBP proteins also serve as ligands for the NKG2D receptor. The mouse orthologues of the ULBP molecules are the retinoic acid early inducible 1 (RAE-1) genes.

ORTHOLOGUES

Homologous genes in different species, the lineages of which derive from a common ancestral gene without gene duplication or horizontal transmission.

MICROARRAY ANALYSIS

A technique for measuring the transcription of genes. It involves hybridization of fluorescent-labelled cDNA prepared from a cell or tissue of interest with glass slides or other surfaces dotted with thousands of oligonucleotides or cDNA, ideally representing all expressed genes in the species.

NASU–HAKOLA DISEASE

Also known as PLOSL (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy), it is a recessively inherited disease characterized by a unique combination of psychotic symptoms rapidly progressing to presenile dementia and bone cysts restricted to wrists and ankles. It is caused by a loss-of-function mutation in the DAP12 (Tyrobp) gene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerwenka, A., Lanier, L. Natural killer cells, viruses and cancer. Nat Rev Immunol 1, 41–49 (2001). https://doi.org/10.1038/35095564

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35095564

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing