Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells

Abstract

Ductal structures of the adult pancreas contain stem cells that differentiate into islets of Langerhans. Here, we grew pancreatic ductal epithelial cells isolated from prediabetic adult non-obese diabetic mice in long-term cultures, where they were induced to produce functioning islets containing α, β and δ cells. These in vitro-generated islets showed temporal changes in mRNA transcripts for islet cell-associated differentiation markers, responded in vitro to glucose challenge, and reversed insulin-dependent diabetes after being implanted into diabetic non-obese diabetic mice. The ability to control growth and differentiation of islet stem cells provides an abundant islet source for β-cell reconstitution in type I diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cultures of epithelioid IPSCs, IPCs and IPC-derived islets.
Figure 2: Increased production and release of insulin by nicotinamide and other secretogogs.
Figure 3: Increased differentiation of IPCs to islets in the presence of specific growth factors.
Figure 4: Anatomical and histological characteristics of the kidney subcapsular region of IPC-derived islet implantation.
Figure 5: Reversal of insulin dependent diabetes in NOD mice with subcapsular kidney or subcutaneous implantation of IPC-derived islets.
Figure 6: Induction of angiogenesis in vivo by IPC-derived islets

Similar content being viewed by others

References

  1. Lacy, P.E. & Davies, J. Preliminary studies on the demonstration of insulin in the islets by fluorescent antibody technique. Diabetes 6, 354–357 ( 1957).

    Article  CAS  Google Scholar 

  2. Baum, J., Simons, B.E., Unger, R.H. & Madison, L.L. Localization of glucagon in the alpha cells in the pancreatic islet by immunofluorescent technics. Diabetes 11, 371– 374 (1962).

    CAS  Google Scholar 

  3. Dubois, M.P. Immunoreactive somatostatin is present in discrete cells of the endocrine pancreas. Proc. Natl. Acad. Sci. USA 72, 1340–1343 (1975).

    Article  CAS  Google Scholar 

  4. Pelletier, G., Leclerc, R., Arimura, A. & Schally, A.V. Immunohistochemical localization of somatostatin in rat pancreas. J. Histochem. Cytochem. 23, 699–701 ( 1975).

    Article  CAS  Google Scholar 

  5. Larsson, L.I., Sundler, F. & Hakanson, R. Immunohistochemical localization of human pancreatic polypeptide (HPP) to a population of islet cells. Cell Tissue Res. 156, 167–171 ( 1975).

    Article  CAS  Google Scholar 

  6. Brelje, T.C., Scharp, D.W. & Sorenson, R.L. Three-dimensional imaging of intact isolated islets of Langerhans with confocal microscopy. Diabetes 38 , 808–814 (1989).

    Article  CAS  Google Scholar 

  7. Pictet, R.L. & Rutter, W.J. in Handbook of Physiology (eds. Steiner, D. & Frienkel, N.) 25–66 (Williams & Wilkins, Baltimore, Maryland, 1972).

    Google Scholar 

  8. Slack, J.M.W. Developmental biology of the pancreas. Development 121, 1569–1580 (1995).

    CAS  Google Scholar 

  9. Bonner-Weir, S. & Smith, F.E. Islet cell growth and the growth factors involved. Trends Endocrinol. Metab. 5, 60–64 (1994).

    Article  CAS  Google Scholar 

  10. Weaver, C.V., Sorenson, R.L. & Kuang, H.C. Immunocytochemical localization of insulin- immunoreactive cells in the ducts of rats treated with trypsin inhibitor. Diabetologia 28, 781–785 ( 1985).

    CAS  Google Scholar 

  11. Bouwens, L. & Pipleers, D.G. Extra-insular beta cells associated with ductules are frequent in adult human pancreas. Diabetologia 41, 629–633 ( 1998).

    Article  CAS  Google Scholar 

  12. Gu, D, Sarvetnick, N. Epithelial cell proliferation and islet neogenesis in IFN-γ transgenic mice. Development 118, 33–46 ( 1993).

    CAS  Google Scholar 

  13. Hellerstrom, C. The life story of the pancreatic B cell. Diabetologia 26, 393–400 (1984).

  14. Swenne, I. Pancreatic beta-cell growth and diabetes mellitus. Diabetologia 35, 193–201 ( 1992).

    Article  CAS  Google Scholar 

  15. Rosenberg, L. & Vinik, A.I. Trophic stimulation of the ductular-islet cell axis: a new approach to the treatment of diabetes. Adv. Exp. Med. Biol. 321, 95–104 ( 1992).

    Article  CAS  Google Scholar 

  16. Rao, M.S., Dwivedi, R.S. & Yeldani, A.V. Role of periductal and ductal epithelial cells of the adult pancreas in pancreatic hepatocyte lineage. A change in the differentiation commitment. Am. J. Pathol. 134, 1069– 1086 (1989).

    CAS  Google Scholar 

  17. Weir, G.C. & Bonner-Weir, S. Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J. Clin. Invest. 85, 983–987 (1990).

    Article  CAS  Google Scholar 

  18. Teitelman, G., Alpert, S., Polak, J.M., Martinez, A. & Hanahan, D. Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development 118, 1031–1039 (1993).

    CAS  Google Scholar 

  19. Bonner-Weir, S. & Orci, L. New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes 41, 93–97 ( 1982).

    Google Scholar 

  20. Teitelman, G., Alpert, S. & Hanahan, D., Proliferation, senescence, and neoplastic progression of β cells in hyperplastic pancreatic islets. Cell 52, 97–105 (1988).

    Article  CAS  Google Scholar 

  21. Menger, M.D., Vajkoczy, P., Beger, C. & Messmer, K. Orientation of microvascular blood flow in pancreatic islet isografts. J. Clin. Invest. 93, 2280–2285 ( 1994).

    Article  CAS  Google Scholar 

  22. Eisenbarth, G.S. Type I diabetes mellitus, a chronic autoimmune disease. N. Engl. J. Med. 314, 1360–1368 ( 1986).

    Article  CAS  Google Scholar 

  23. Wicker, L.S., Todd, J.A. & Peterson, L.B. Genetic control of autoimmune diabetes in the NOD mouse. Ann. Rev. Immunol. 13, 179– 200 (1995).

    Article  CAS  Google Scholar 

  24. Leiter, E.H., Prochazka, M. & Coleman, D.L. Animal model of human disease, the non-obese diabetic (NOD) mouse. Am. J. Path. 128, 380– 383 (1987).

    CAS  Google Scholar 

  25. Vogel, G. Harnessing the power of stem cells. Science 283, 1468–1470 (1999).

    Article  Google Scholar 

  26. Leary, T., Jones, P.L., Appleby, M., Blight, A., Parkinson, K. & Stanley, M. Epidermal keratinocyte self-renewal is dependent upon dermal integrity. J. Invest. Dermatol. 99, 422–430 (1992).

    Article  CAS  Google Scholar 

  27. Ramrakha, P.S., Sharp, R.J., Yeoman, H. & Stanley, M.A. The influence of MHC-compatible and MHC-incompatible antigen-presenting cells on the survival of MHC-compatible cultured murine keratinocyte allografts. Transplantation 48, 676–680 ( 1989).

    CAS  Google Scholar 

  28. O'Connor, N.E., Mulliken, J.B., Banks-Schlegel, S., Kehinde, O. & Green, H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet I, 75–78 (1981).

    Article  Google Scholar 

  29. Schofield, R. & Dexter, T.M. Studies on the self-renewal ability of CFU-S which have been serially transferred in long-term culture or in vivo. Leukaemia Res. 9, 305– 313 (1985).

    Article  CAS  Google Scholar 

  30. Cornelius, J.G., Tchernev, V., Kao K-J. & Peck, A.B. In vitro generation of islets in long-term cultures of pluripotent stem cells from adult mouse pancreas. Horm. Metab. Res. 29, 271– 277 (1997).

    Article  CAS  Google Scholar 

  31. Pittenger, M.F. et al. Multilineage potential of adult human mesenchymal stem cells . Science 284, 143–147 (1999).

    Article  CAS  Google Scholar 

  32. Otonkoski, T., Beattie, G.M., Mally, M.I., Ricordi, C. & Hayek, A. Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J. Clin. Invest. 92, 1459–1466 (1993).

    Article  CAS  Google Scholar 

  33. Ohgawara, H. et al. Reversal of glucose insensitivity of pancreatic B-cells due to prolonged exposure to high glucose in culture: effect of nicotinamide on pancreatic B-cells. Tohoku J. Exp. Med. 169, 159–166 (1993).

    Article  CAS  Google Scholar 

  34. Sener, A., Welsh, M., Welsh, N., Hellerstrom, C., Malaisse, W.J. Maturation of fetal rat islets in vitro during tissue culture is associated with increased mitochondrial function. Diabetes Research 13, 157–161 ( 1990).

    CAS  Google Scholar 

  35. Drucker, D.J., Philippe, J., Mojsor, S., Chick, W.L. & Habener, J.F. Glucagon like peptide-1 stimulates insulin gene expression and increased cyclic AMP levels in a rat islet cell line. Proc. Natl. Acad. Sci. USA 84, 3434–3438 (1987).

    Article  CAS  Google Scholar 

  36. Beattie, G.M., Levine, F., Mally, M.I., Otonkoski, T., O'Brien, J.S., Salomon, D.R. & Hayek, A. Acid β-galactosidase: a developmentally regulated marker of endocrine cell precursors in the human fetal pancreas . J. Clin. Endo. Med. 78, 1232– 1240 (1994).

    CAS  Google Scholar 

  37. Rooman, I., Schuit, F. & Bouwens, L. Effect of vascular endothelial growth factor on growth and differentiation of pancreatic ductal epithelium. Lab. Invest. 76, 225–232 ( 1997).

    CAS  Google Scholar 

  38. Lefebvre, V.H. et al. Culture of adult human islet preparations with hepatocyte growth factor and 804G matrix is mitogenic for duct cells but not for beta-cells . Diabetes 47, 134–137 (1998).

    Article  CAS  Google Scholar 

  39. Otonkoski, T. et al. Hepatocyte growth factor/scatter factor has insulinotropic activity in human fetal pancreatic cells. Diabetes 43, 947–953 (1994).

    Article  CAS  Google Scholar 

  40. Watanabe, T. et al . Pancreatic beta-cell replication and amelioration of surgical diabetes by Reg protein. Proc. Natl. Acad. Sci. USA 91, 3589–3592 (1994).

    Article  CAS  Google Scholar 

  41. Wang, T.C. et al. Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J. Clin. Invest. 92, 1349–1356 ( 1993).

    Article  CAS  Google Scholar 

  42. Rafaeloff, R. et al. Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters. J. Clin. Invest. 99, 2100– 2109 (1997).

    Article  CAS  Google Scholar 

  43. Mashima, H., Shibata, H., Mine, T. & Kojima, I. Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology 137, 3969–3976 (1996).

    Article  CAS  Google Scholar 

  44. Mashima, H. et al. Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J. Clin. Invest. 97, 1647–1654 ( 1996).

    Article  CAS  Google Scholar 

  45. Anderson, J.T., Cornelius, J.G., Jarpe, A.J., Winter, W.E. & Peck, A.B. Insulin-dependent diabetes in the NOD mouse model. II. β cell destruction in autoimmune diabetes is a T H2 and not a TH1 mediated event. Autoimmunity 15: 113–122, ( 1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammon B. Peck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramiya, V., Maraist, M., Arfors, K. et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6, 278–282 (2000). https://doi.org/10.1038/73128

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing