Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells

Abstract

NKG2D is an activating receptor that stimulates innate immune responses by natural killer cells upon engagement by MIC ligands, which are induced by cellular stress. Because NKG2D is also present on most CD8αβ T cells, it may modulate antigen-specific T cell responses, depending on whether MIC molecules—distant homologs of major histocompatibility complex (MHC) class I with no function in antigen presentation—are induced on the surface of pathogen-infected cells. We found that infection by cytomegalovirus (CMV) resulted in substantial increases in MIC on cultured fibroblast and endothelial cells and was associated with induced MIC expression in interstitial pneumonia. MIC engagement of NKG2D potently augmented T cell antigen receptor (TCR)-dependent cytolytic and cytokine responses by CMV-specific CD28 CD8αβ T cells. This function overcame viral interference with MHC class I antigen presentation. Combined triggering of TCR-CD3 complexes and NKG2D induced interleukin 2 production and T cell proliferation. Thus NKG2D functioned as a costimulatory receptor that can substitute for CD28.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of MIC expression on CMV-infected fibroblasts and endothelial cells.
Figure 2: Association of induced MIC expression with productive CMV infection in cultured endothelial cells and lung disease.
Figure 3: Augmentation of anti-CMV cytolytic T cell responses by MICA-NKG2D.
Figure 4: Antigen dose-dependent augmentation of cytolytic T cell function by NKG2D.
Figure 5: Stimulation of T cell cytokine secretion by NKG2D.
Figure 6: Stimulation by NKG2D of IL-2 production in peripheral blood CMV-specific CD28 CD8αβ T cells.
Figure 7: Costimulation by NKG2D of TCR-CD3 complex–dependent IL-2 production and proliferation of CD28 CD8αβ T cells

Similar content being viewed by others

References

  1. Germain, R. N. & Margulies, D. H. The biochemistry and cell biology of antigen processing and presentation. Annu. Rev. Immunol. 11, 403–450 (1993).

    Article  Google Scholar 

  2. Davis, M. M. et al. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    Article  Google Scholar 

  3. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  Google Scholar 

  4. Hara, T., Fu, S. M. & Hansen, J. A. Human T cell activation. II. A new activation pathway used by a major T cell population via a disulfide-bonded dimer of a 44 kilodalton polypeptide (9.3 antigen). J. Exp. Med. 161, 1513–1524 (1985).

    Article  Google Scholar 

  5. Thompson, C. B. et al. CD28 activation pathway regulates the production of multiple T cell-derived lymphokines/cytokines. Proc. Natl Acad. Sci. USA 86, 1333–1337 (1989).

    Article  Google Scholar 

  6. Gimmi, C. D. et al. B-cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete interleukin 2. Proc. Natl Acad. Sci. USA 88, 6575–6579 (1991).

    Article  Google Scholar 

  7. Linsley, P. S. et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med. 173, 721–730 (1991).

    Article  Google Scholar 

  8. Harding, F. A., McArthur, J. G., Gross, J. A., Raulet, D. H. & Allison, J. P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T cell clones. Nature 356, 607–609 (1992).

    Article  Google Scholar 

  9. Gribben, J. G. et al. CTLA-4 mediates antigen-specific apoptosis of human T cells. Proc. Natl Acad. Sci. USA 92, 811–815 (1995).

    Article  Google Scholar 

  10. Chambers, C. A. & Allison, J. P. Costimulatory regulation of T cell function. Curr. Opin. Cell Biol. 11, 203–210 (1999).

    Article  Google Scholar 

  11. Ravetch, J. V. & Lanier, L. L. Immune inhibitory receptors. Science 290, 84–89 (2000).

    Article  Google Scholar 

  12. Lee, N. et al. HLA-E is the major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl Acad. Sci. USA 95, 5199–5204 (1998).

    Article  Google Scholar 

  13. Long, E. O. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17, 875–904 (1999).

    Article  Google Scholar 

  14. Lanier, L. L., Corliss, B. C., Wu, J., Leong, C. & Phillips, J. H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703–707 (1998).

    Article  Google Scholar 

  15. Lanier, L. L. Turning on natural killer cells. J. Exp. Med. 191, 1259–1262 (2000).

    Article  Google Scholar 

  16. Phillips, J. H., Gumperz, J. E., Parham, P. & Lanier, L. L. Superantigen-dependent, cell-mediated cytotoxicity inhibited by MHC class I receptors on T lymphocytes. Science 268, 403–405 (1995).

    Article  Google Scholar 

  17. Carena, I., Shamshiev, A., Donda, A., Colonna, M. & De Libero, G. Major histocompatibility complex class I molecules modulate activation threshold and early signaling of T cell antigen receptor-γδ stimulated by nonpeptide ligands. J. Exp. Med. 186, 1769–1774 (1997).

    Article  Google Scholar 

  18. Ikeda, H. et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6, 199–208 (1997).

    Article  Google Scholar 

  19. Bakker, A. B. H., Phillips, J. H., Figdor, C. G. & Lanier, L. L. Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells,γδ T cells, and antigen-specific CTL. J. Immunol. 160, 5239–5245 (1998).

    Google Scholar 

  20. Noppen, C. et al. C-type lectin-like receptors in peptide-specific HLC class I-restricted expression and modulation of effector functions in clones sharing identical TCR structure and epitope specificity. Eur. J. Immunol. 28, 1134–1142 (1998).

    Article  Google Scholar 

  21. Houchins, J. P., Yabe, T., McSherry, C. & Bach, F. H. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J. Exp. Med. 173, 1017–1020 (1991).

    Article  Google Scholar 

  22. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  Google Scholar 

  23. Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP 10. Science 285, 730–732 (1999).

    Article  Google Scholar 

  24. Bahram, S., Bresnahan, M., Geraghty, D. E. & Spies, T. A second lineage of mammalian major histocompatibility complex class I genes. Proc. Natl Acad. Sci. USA 91, 6259–6263 (1994).

    Article  Google Scholar 

  25. Bahram, S. & Spies, T. Nucleotide sequence of a human MHC class I MICB cDNA. Immunogenetics 43, 230–233 (1996).

    Google Scholar 

  26. Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl Acad. Sci. USA 93, 12445–12450 (1996).

    Article  Google Scholar 

  27. Li, P. et al. Crystal structure of the MHC class I homolog MIC-A, aγδ T cell ligand. Immunity 10, 577–584 (1999).

    Article  Google Scholar 

  28. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelialγδ T cells. Science 279, 1737–1740 (1998).

    Article  Google Scholar 

  29. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derivedγδ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    Article  Google Scholar 

  30. Kao, H. T. & Nevins, J. R. Transcriptional activation and subsequent control of the human heat shock gene during adenovirus infection. Mol. Cell. Biol. 3, 2058–2065 (1983).

    Article  Google Scholar 

  31. Khandjian. E. W. & Türler, H. Simian virus 40 and polyomavirus induce synthesis of heat shock proteins in mammalian cells. Mol. Cell. Biol. 3, 1–8 (1983).

    Article  Google Scholar 

  32. LaThangue, N. B. & Latchman, D. S. Nuclear accumulation of a heat-shock 70-like protein during herpes simplex virus replication. Biosci. Rep. 7, 475–483 (1987).

    Article  Google Scholar 

  33. Santomenna, L. D. & Colberg-Poley, A. M. Induction of cellular hsp70 expression by human cytomegalovirus. J. Virol. 64, 2033–2040 (1990).

    Google Scholar 

  34. Ploegh, H. L. Viral strategies of immune evasion. Science 280, 248–253 (1998).

    Article  Google Scholar 

  35. Riddell, S. R. et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257, 238–241 (1992).

    Article  Google Scholar 

  36. Riddell, S. R. Pathogenesis of cytomegalovirus pneumonia in immunocompromised hosts. Sem. Resp. Infect. 10, 199–208 (1995).

    Google Scholar 

  37. McLaughlin-Taylor, E. et al. Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J. Med. Virol. 43, 103–110 (1994).

    Article  Google Scholar 

  38. Gilbert, M. J., Riddell, S. R., Plachter, B. & Greenberg, P. D. Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product. Nature 383, 720–722 (1996).

    Article  Google Scholar 

  39. Parham, P., Barstable, C. J. & Bodmer, W. F. Use of a monoclonal antibody (W6/32) in structural studies of HLA-A, B, C antigens. J. Immunol. 123, 342–349 (1979).

    Google Scholar 

  40. Azuma, M., Phillips, J. H. & Lanier, L. L. CD28 T lymphocytes – antigenic and functional properties. J. Immunol. 150, 1147–1159 (1993).

    Google Scholar 

  41. Chalupny, J. et al. Soluble forms of the novel MHC class I-related molecules ULBP1 and ULBP2 bind to, and functionally activate NK cells. FASEB J. 14, A1018 (2000).

    Google Scholar 

  42. Posnett, D. N., Edinger, J. W., Manavalan, J. S., Irwin, C. & Marodon, G. Differentiation of human CD8 T cells: implications for in vivo persistence of CD8+ CD28 cytotoxic effector clones. Int. Immunol. 11, 229–241 (1999).

    Article  Google Scholar 

  43. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  Google Scholar 

  44. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    Article  Google Scholar 

  45. Waldmann, W. J., Sneddon, J. M., Stephens, R. E. & Roberts, W. H. Enhanced endothelial cytopathogenicity induced by a cytomegalovirus strain propagated in endothelial cells. J. Med. Virol. 28, 223–230 (1989).

    Article  Google Scholar 

  46. Wills, M. R. et al. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T cell receptor usage of pp65-specific CTL. J. Virol. 70, 7569–7579 (1996).

    Google Scholar 

  47. Altman, J. D. et al. Phenotypic analysis of antigen specific T lymphocytes. Science 274, 94–98 (1996).

    Article  Google Scholar 

  48. Callan, M. F. et al. Direct visualization of CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J. Exp. Med. 187, 1395–1402 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. De Jong for assistance; C. Yee for helpful discussions; D. Myerson for tissue specimens; and M. Lopez-Botet and L. Lanier for antibodies. J. R.-H. thanks B. Torok-Storb for support through National Institutes of Health (NIH) grant CA18221. Supported by a Cancer Research Institute Junior Council Fellowship (to M. S. T.) and NIH grants CA18029 and AI41754 (to S. R. R.) and CA18221 and AI30581 (to T. S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Veronika Groh or Thomas Spies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groh, V., Rhinehart, R., Randolph-Habecker, J. et al. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2, 255–260 (2001). https://doi.org/10.1038/85321

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing