Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

DNA double-strand breaks: signaling, repair and the cancer connection

Abstract

To ensure the high-fidelity transmission of genetic information, cells have evolved mechanisms to monitor genome integrity. Cells respond to DNA damage by activating a complex DNA-damage-response pathway that includes cell-cycle arrest, the transcriptional and post-transcriptional activation of a subset of genes including those associated with DNA repair, and, under some circumstances, the triggering of programmed cell death. An inability to respond properly to, or to repair, DNA damage leads to genetic instability, which in turn may enhance the rate of cancer development. Indeed, it is becoming increasingly clear that deficiencies in DNA-damage signaling and repair pathways are fundamental to the etiology of most, if not all, human cancers. Here we describe recent progress in our understanding of how cells detect and signal the presence and repair of one particularly important form of DNA damage induced by ionizing radiation—the DNA double-strand break (DSB). Moreover, we discuss how tumor suppressor proteins such as p53, ATM, Brca1 and Brca2 have been linked to such pathways, and how accumulating evidence is connecting deficiencies in cellular responses to DNA DSBs with tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of DSB repair.

Bob Crimi

Figure 2: Components of DNA DSB repair pathways.

Bob Crimi

Figure 3: Repair genes as caretakers of the genome.

Bob Crimi

Figure 4: Signaling of DSBs.

Bob Crimi

Similar content being viewed by others

References

  1. Lee, S.E. et al. Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulates adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Rich, T., Allen, R.L & Wyllie, A.H. Defying death after DNA damage. Nature 407, 777–783 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Nikiforova, M.N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Vamvakas, S., Vock, E.H. & Lutz, W.K. On the role of DNA double-strand breaks in toxicity and carcinogenesis. Crit. Rev. Toxicol. 27, 155–174 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Richardson, C. & Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Haber, J.E. Partners and pathways repairing a double-strand break. Trends Genet. 16, 259–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Karran, P. DNA double strand break repair in mammalian cells. Curr. Opin. Genet. Dev. 10, 144–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Johnson, R.D. & Jasin, M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19, 3398–3407 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsuzuki, T. et al. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc. Natl. Acad. Sci. USA 93, 6236–6240 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tashiro, S., Walter, J., Shinohara, A., Kamada, N. & Cremer, T. Rad51 accumulation at sites of DNA damage and in post replicative chromatin. J. Cell Biol. 150, 283–291 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, N. et al. XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol. Cell 1, 783–793 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Essers, J. et al. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89, 195–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Hiramoto, T. et al. Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer. Oncogene 18, 3422–3426 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Matsuda, M. et al. Mutations in the Rad54 recombination gene in primary cancer. Oncogene 18, 3427–3430 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Rijkers, T. et al. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Cell. Biol. 18, 6423–6429 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haber, J.E. DNA repair. Gatekeepers of recombination. Nature 398, 665–667 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Welcsh, P.L., Owens, K.N. & King, M.C. Insights into the functions of BRCA1 and BRCA2. Trends Genet. 16, 69–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Hakem, R., de la Pompa, J.L., Elia, A., Potter, J. & Mak, T.W. Partial rescue of Brca1 (5-6) early embryonic lethality by p53 or p21 null mutation. Nature Genet. 16, 298–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Sharan, S.K. et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804–810 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Bochar, D.A. et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102, 257–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Zhong, Q. et al. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science 285, 747–750 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Phillips, K.A. et al. Frequency of p53 mutations in breast carcinomas from Ashkenazi Jewish carriers of BRCA1 mutations. J. Natl. Cancer Inst. 91, 469–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genet. 22, 37–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Xu, X. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, H. et al. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol. Cell 4, 1–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Khanna, K.K. ATM gene and cancer risk: a continuing debate. J. Natl. Cancer Inst. 92, 795–802 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Petiniot, L.K. et al. Recombinase-activating gene (RAG) 2-mediated V(D)J recombination is not essential for tumorigenesis in Atm-deficient mice. Proc. Natl. Acad. Sci. USA 97, 6664–6669 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bishop, A.J., Barlow, C., Wynshaw-Boris, A.J. & Schiestl, R.H. Atm deficiency causes an increased frequency of intrachromosomal homologous recombination in mice. Cancer Res. 60, 395–399 (2000).

    CAS  PubMed  Google Scholar 

  29. Morrison, C. et al. The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J. 19, 463–471 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barlow, C. et al. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development 125, 4007–4017 (1998).

    CAS  PubMed  Google Scholar 

  31. Rotman, G. & Shiloh, Y. ATM: a mediator of multiple responses to genotoxic stress. Oncogene 18, 6135–6144 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Saintigny, Y., Rouillard, D., Chaput, B., Soussi, T. & Lopez, B.S. Mutant p53 proteins stimulate spontaneous and radiation-induced intrachromosomal homologous recombination independently of the alteration of the transactivation activity and of the G1 checkpoint. Oncogene 18, 3553–3563 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Smilenov, L.B., Dhar, S. & Pandita, T.K. Altered telomere nuclear matrix interactions and nucleosomal periodicity in ataxia telangiectasia cells before and after ionizing radiation treatment. Mol. Cell. Biol. 19, 6963–6971 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Karow, J.K., Wu, L. & Hickson, I.D. RecQ family helicases: roles in cancer and aging. Curr. Opin. Genet. Dev. 10, 32–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Smith, G.C. & Jackson, S.P. The DNA-dependent protein kinase. Genes Dev. 13, 916–934 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Petrini, J.H. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell. Biol. 12, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Carney, J.P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467–476 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Stewart, G.S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 1999).

  41. Lim, D.S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genet. 25, 115–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, S. et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405, 473–477 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, X. et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405, 477–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Riballo, E. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr. Biol. 9, 699–702 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404, 897–900 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Frank, K.M. et al. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol. Cell 5, 993–1002 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Gu, Y. et al. Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc. Natl. Acad. Sci. USA 97, 2668–2673 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, Y., Barnes, D.E., Lindahl, T. & McKinnon, P.J. Defective neurogenesis resulting from DNA ligase IV deficiency requires Atm. Genes Dev. 14, 2576–2580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oka, A. & Takashima, S. Expression of the ataxia-telangiectasia gene (ATM) product in human cerebellar neurons during development. Neurosci. Lett. 252, 195–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Difilippantonio, M.J. et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404, 510–514 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vanasse, G.J. et al. Genetic pathway to recurrent chromosome translocations in murine lymphoma involves V(D)J recombinase. J. Clin. Invest. 103, 1669–1675 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nacht, M. et al. Mutations in the p53 and SCID genes cooperate in tumorigenesis. Genes Dev. 10, 2055–2066 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Jeggo, P.A., Carr, A.M. & Lehmann, A.R. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet. 14, 312–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka, H. et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404, 42–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Bashkirov, V.I., King, J.S., Bashkirova, E.V., Schmuckli-Maurer, J. & Heyer, W.D. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol. Cell. Biol. 20, 4393–4404 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, S.T., Lim, D.S., Canman, C.E. & Kastan, M.B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274, 37538–37543 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Cliby, W.A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 2, 159–169 (1998).

    Article  Google Scholar 

  59. Tibbetts, R.S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152–157 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brown, E.J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. de Klein, A. et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 10, 479–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Bork, P. et al. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11, 68–76 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Harkin, D.P. et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97, 575–586 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. MacLachlan, T.K. et al. BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J. Biol. Chem. 275, 2777–2785 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Zhou, B.-B. et al. Caffeine abolishes the mammalian G2/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J. Biol. Chem. 275, 10342–10348 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. USA 97, 10389–10394 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–501 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Takai, H. et al. Aberrant cell cycle checkpoint function and early embryonic death in Chk1−/− mice. Genes Dev. 12, 1439–1447 (2000).

    Google Scholar 

  70. Liu, Q. et al. Chk1 is an essential kinase that is regulated by ATR and required for the G2/M DNA damage checkpoint. Genes Dev. 14, 1448–1459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. O'Connell, M.J., Walworth, N.C. & Carr, A.M. The G2-phase DNA-damage checkpoint. Trends Cell Biol. 10, 296–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Passalaris, T.M., Benanti, J.A., Gewin, L., Kiyono, T. & Galloway, D.A. The G(2) checkpoint is maintained by redundant pathways. Mol. Cell. Biol. 19, 5872–5881 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Caspari, T. How to activate p53. Curr. Biol. 10, R315–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Bell, D. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Lee, J.S., Collins, K.M., Brown, A.L., Lee, C.H. & Chung, J.H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201–204 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Khanna and Jackson Laboratories for discussions, and J. Bradbury for editorial and scientific advice. We apologize to colleagues whose work we could not cite due to space restrictions. The Khanna laboratory is funded by grants from the National Health and Medical Research Council (Australia), the Queensland Cancer Fund (Australia) and the Susan G. Komen Breast Cancer Foundation (USA). The Jackson Laboratory is funded by grants from the Cancer Research Campaign, the Association for International Cancer Research and the A-T Medical Research Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kum Kum Khanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanna, K., Jackson, S. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27, 247–254 (2001). https://doi.org/10.1038/85798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing