Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells

Abstract

The rules that govern memory T cell differentiation are not well understood. This study shows that after antigenic stimulation naïve CD8+ T cells become committed to dividing at least seven times and differentiating into effector and memory cells. Once the parental naïve CD8+ T cell had been activated, this developmental process could not be interrupted and the daughter cells continued to divide and differentiate in the absence of further antigenic stimulation. These data indicate that initial antigen encounter triggers an instructive developmental program that does not require further antigenic stimulation and does not cease until memory CD8+ T cell formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Varying the antigen dose affects the magnitude of the CD8+ T cell response and the recruitment of naïve CD8+ T cells, but all recruited cells divide extensively.
Figure 2: CD8+ T cells become committed to differentiate fully into effector CTLs after initial activation.
Figure 3: Activated CD8+ T cells continue to divide in the absence of antigenic stimulation in vitro.
Figure 4: Repeated exposure to antigen is not necessary for activated CD8+ T cells to divide several times and differentiate into effector CTLs in vivo.
Figure 5: IL-2 is important for activated CD8+ T cells proliferating in the ab-sence of continuous antigenic stimulation.
Figure 6: Activated CD8+ T cells are programmed to differentiate into long-lived, functional memory CD8+ T cells.
Figure 7: Memory CD8+ T cells generated in antigen-limiting conditions can confer protective immunity.
Figure 8: Models for proliferation and differentiation of naïve CD8+ T cells.

Similar content being viewed by others

References

  1. Ahmed, R. & Biron, C. A. in Fundamental Immunology (ed. Paul, W. E.) 1295–1333 (Lippincott-Raven Publishers, Philadelphia, 1999).

    Google Scholar 

  2. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  Google Scholar 

  3. Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    Article  CAS  Google Scholar 

  4. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    Article  CAS  Google Scholar 

  5. Opferman, J. T., Ober, B. T. & Ashton-Rickardt, P. G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).

    Article  CAS  Google Scholar 

  6. Oehen, S. & Brduscha-Riem, K. Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J. Immunol. 161, 5338–5346 (1998).

    CAS  Google Scholar 

  7. Bachmann, M. F., Barner, M., Viola, A. & Kopf, M. Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur. J. Immunol. 29, 291–299 (1999).

    Article  CAS  Google Scholar 

  8. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  Google Scholar 

  9. Murali-Krishna, K. & Ahmed, R. Cutting edge: naive T cells masquerading as memory cells. J. Immunol. 165, 1733–1737 (2000).

    Article  CAS  Google Scholar 

  10. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nature Immunol. 1, 47–53 (2000).

    Article  CAS  Google Scholar 

  11. Busch, D. H., Pilip, I. M., Vijh, S. & Pamer, E. G. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8, 353–362 (1998).

    Article  CAS  Google Scholar 

  12. Jacob, J. & Baltimore, D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).

    Article  CAS  Google Scholar 

  13. Grayson, J. M., Zajac, A. J., Altman, J. D. & Ahmed, R. Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J. Immunol. 164, 3950–3954 (2000).

    Article  CAS  Google Scholar 

  14. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  Google Scholar 

  15. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    Article  CAS  Google Scholar 

  16. Iezzi, G., Scotet, E., Scheidegger, D. & Lanzavecchia, A. The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur. J. Immunol. 29, 4092–4101 (1999).

    Article  CAS  Google Scholar 

  17. Weintraub, H., Flint, S. J., Leffak, I. M., Groudine, M. & Grainger, R. M. The generation and propagation of variegated chromosome structures. Cold Spring Harb. Symp. Quant. Biol. 42, 401–407 (1978).

    Article  CAS  Google Scholar 

  18. Pantaleo, G. et al. Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature 370, 463–467 (1994).

    Article  CAS  Google Scholar 

  19. Wills, M. R.et al. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T- cell receptor usage of pp65-specific CTL. J. Virol. 70, 7569–7579 (1996).

    CAS  PubMed Central  Google Scholar 

  20. Callan, M. F.et al. Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nature Med. 2, 906–911 (1996).

    Article  CAS  Google Scholar 

  21. Sunil-Chandra, N. P., Arno, J., Fazakerley, J. & Nash, A. A. Lymphoproliferative disease in mice infected with murine γ herpesvirus 68. Am. J. Pathol. 145, 818–826 (1994).

    CAS  PubMed Central  Google Scholar 

  22. Mullbacher, A. The long-term maintenance of cytotoxic T cell memory does not require persistence of antigen. J. Exp. Med. 179, 317–321 (1994).

    Article  CAS  Google Scholar 

  23. Murata, K. et al. Characterization of in vivo primary and secondary CD8+ T cell responses induced by recombinant influenza and vaccinia viruses. Cell. Immunol. 173, 96–107 (1996).

    Article  CAS  Google Scholar 

  24. Pircher, H., Rohrer, U. H., Moskophidis, D., Zinkernagel, R. M. & Hengartner, H. Lower receptor avidity required for thymic clonal deletion than for effector T-cell function. Nature 351, 482–485 (1991).

    Article  CAS  Google Scholar 

  25. Zimmerman, C., Brduscha-Riem, K., Blaser, C., Zinkernagel, R. M. & Pircher, H. Visualization, characterization, and turnover of CD8+ memory T cells in virus-infected hosts. J. Exp. Med. 183, 1367–1375 (1996).

    Article  CAS  Google Scholar 

  26. Harrington, L. E., Galvan, M., Baum, L. G., Altman, J. D. & Ahmed, R. Differentiating between memory and effector CD8 T cells by altered expression of cell surface O-glycans. J. Exp. Med. 191, 1241–1246 (2000).

    Article  CAS  Google Scholar 

  27. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    Article  CAS  Google Scholar 

  28. Matloubian, M., Somasundaram, T., Kolhekar, S. R., Selvakumar, R. & Ahmed, R. Genetic basis of viral persistence: single amino acid change in the viral glycoprotein affects ability of lymphocytic choriomeningitis virus to persist in adult mice. J. Exp. Med. 172, 1043–1048 (1990).

    Article  CAS  Google Scholar 

  29. Ehl, S., Hombach, J., Aichele, P., Hengartner, H. & Zinkernagel, R. M. Bystander activation of cytotoxic T cells: studies on the mechanism and evaluation of in vivo significance in a transgenic mouse model. J. Exp. Med. 185, 1241–1251 (1997).

    Article  CAS  Google Scholar 

  30. Zarozinski, C. C. & Welsh, R. M. Minimal bystander activation of CD8 T cells during the virus-induced polyclonal T cell response. J. Exp. Med. 185, 1629–1639 (1997).

    Article  CAS  Google Scholar 

  31. Jelley-Gibbs, D. M., Lepak, N. M., Yen, M. & Swain, S. L. Two distinct stages in the transition from naive CD4 T cells to effectors, early antigen-dependent and late cytokine-driven expansion and differentiation. J. Immunol. 165, 5017–5026 (2000).

    Article  CAS  Google Scholar 

  32. Mercado, R. et al. Early Programming of T cell Populations Responding to Bacterial Infection. J. Immunol. 165, 6833–6839 (2000).

    Article  CAS  Google Scholar 

  33. Biron, C. A. Cytokines in the generation of immune responses to, and resolution of, virus infection. Curr. Opin. Immunol. 6, 530–538 (1994).

    Article  CAS  Google Scholar 

  34. Hou, S., Hyland, L., Ryan, K. W., Portner, A. & Doherty, P. C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652–654 (1994).

    Article  CAS  Google Scholar 

  35. Vijh, S. & Pamer, E. G. Immunodominant and subdominant CTL responses to Listeria monocytogenes infection. J. Immunol. 158, 3366–3371 (1997).

    CAS  Google Scholar 

  36. Shen, H. et al. Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell 92, 535–545 (1998).

    Article  CAS  Google Scholar 

  37. Ahmed, R., Salmi, A., Butler, L. D., Chiller, J. M. & Oldstone, M. B. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 160, 521–540 (1984).

    Article  CAS  Google Scholar 

  38. Huang, J-F. et al. TCR-mediated internalization of peptide-MHC-complexes acquired by T cells. Science 286, 952–954 (1999).

    Article  CAS  Google Scholar 

  39. Hwang, I. et al. T cells can use either T cell receptor or CD28 receptors to absorb and internalize cell surface molecules derived from antigen-presenting cells. J. Exp. Med. 191, 1137–1148 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Antia, B. Evavold, G. Shadel and the Ahmed lab for helpful discussions and critical reading of this manuscript, H. Shen for the recombinant L. monocytogenes strain XFL203 and P. Mahar and K. Madhavi-Krishna for their technical assistance. Supported by National Institutes of Health grant AI30048 (to R. A.) and the Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation, DRG-1570 (to S.M.K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafi Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaech, S., Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat Immunol 2, 415–422 (2001). https://doi.org/10.1038/87720

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing