Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The allogeneic response and tumor immunity

Abstract

The strong allogeneic response to donor MHC molecules in transplantation and the weak response to tumor antigens represent two important and divergent but potentially interactive immune responses. A patient's response to allogeneic MHC molecules might promote an effective T-cell response to self MHC-restricted tumor peptides and the possibilities for this are discussed here. These allogeneic responses might successfully be harnessed to promote the immune eradication of metastatic cancer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chance cross-reactions between direct T-cell allorecognition and self MHC-restricted recognition of tumor peptides.

Renee Lucas

Figure 2: Direct CD4+ T-cell allorecognition for provision of T-cell help for allo-antibody responses in transplantation.

Stephen Horwitz

Figure 3: Direct CD4+ T-cell allorecognition for provision of T-cell help for the generation of self-MHC restricted T-cell responses to tumor peptides.

Renee Lucas

References

  1. Vaughan, J.W. Cancer vaccine and anticancer globulins as an aid in the surgical treatment of malignancy. J. Am. Med. Assoc. 63, 1258–1265 (1914).

    Article  Google Scholar 

  2. Hellstrom, I. & Hellstrom, K.E. Cell-bound immunity to autologous and syngeneic mouse tumors induced by methylcholanthrene and plastic discs. Science 156, 981–983 (1967).

    Article  CAS  Google Scholar 

  3. Hellstrom, I., Hellstrom, K.E., Pierce, G.E. & Yang, J.P. Cellular and humoral immunity to different types of human neoplasms. Nature 220, 1352–1354 (1968).

    Article  CAS  Google Scholar 

  4. Gilboa, E. The makings of a tumor rejection antigen. Immunity 11, 263–270 (1999).

    Article  CAS  Google Scholar 

  5. Kugler, A. et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nature Med. 6, 332–336 (2000).

    Article  CAS  Google Scholar 

  6. Thurner, B. et al. Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T Cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190, 1669–1678 (1999).

    Article  CAS  Google Scholar 

  7. Nisbet, N.W., Simonsen, M. & Zaleski, M. The frequency of antigen-sensitive cells in tissue transplantation. A commentary on clonal selection. J. Exp. Med. 129, 459–467 (1969).

    Article  CAS  Google Scholar 

  8. Suchin, E.J. et al. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J. Immunol. 166, 973–981 (2001).

    Article  CAS  Google Scholar 

  9. Matzinger, P. & Bevan, M. J., Induction of H-2-restricted cytotoxic cells: in vivo induction has the appearance of being unrestricted. Cell. Immunol. 29, 1–5 (1977).

    Article  CAS  Google Scholar 

  10. Bevan, M.J. High determinant density may explain the phenomenon of alloreactivity. Immunology 5, 128–130 (1984).

    CAS  Google Scholar 

  11. Lechler, R.I. et al. The molecular basis of alloreactivity. Immunol. Today 11, 83–88 (1990).

    Article  CAS  Google Scholar 

  12. Santos-Aguado, J. et al. Alloreactivity studied with mutants of HLA-A2. Proc. Natl. Acad. Sci. USA 86, 8936–8940 (1989).

    Article  CAS  Google Scholar 

  13. Reiser, J.-B. et al. Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. Nature Immunol. 1, 291–297 (2000).

    Article  CAS  Google Scholar 

  14. Bach, F.H. & Voynow, N.K. One-way stimulation in mixed leukocyte cultures. Science 153, 545–547 (1966).

    Article  CAS  Google Scholar 

  15. Burrows, S.R., Khanna, R., Burrows, J.M. & Moss, D.J. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease. J. Exp. Med. 179, 1155–1161 (1994).

    Article  CAS  Google Scholar 

  16. Gjertsen, H.A., Lundin, K.E., Hansen, T. & Thorsby, E. T cells specific for viral antigens presented by HLA-Dw4 recognise DR13 on allogeneic cells: a possible mechanism for induction of rejection. Transpl. Immunol. 1, 126–131 (1993).

    Article  CAS  Google Scholar 

  17. Shearer, G.M., Pinto, L.A. & Clerici, M. Alloimmunization for immune-based therapy and vaccine design against HIV/AIDS. 20, 66–71 (1999).

  18. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991 (1994).

    Article  CAS  Google Scholar 

  19. Medzhitov, R. & Janeway, C. Innate immunity. N. Engl. J. Med. 343, 338–344 (2000).

    Article  CAS  Google Scholar 

  20. Hart, D.N.J. & Fabre, J.W. Demonstration and characterisation of Ia positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J. Exp. Med. 154, 347–361 (1981).

    Article  CAS  Google Scholar 

  21. Benham, A.M., Sawyer, G.J. & Fabre, J.W. Indirect T cell allorecognition of donor antigens contributes to the rejection of vascularised kidney allografts. Transplantation 59, 1028–1032 (1995).

    Article  CAS  Google Scholar 

  22. Hart, D.N.J., Winearls, C.G. & Fabre, J.W. Graft adaptation: studies on possible mechanisms in long surviving rat renal allografts. Transplantation 30, 73–80 (1980).

    Article  CAS  Google Scholar 

  23. Kelly, C.M. et al. A three-cell cluster hypothesis for non-cognate T-B collaboration via direct T cell recognition of allogeneic dendritic cells. Transplantation 61, 1094–1099 (1996).

    Article  CAS  Google Scholar 

  24. Mason, D.W., Dallman, M.J., Arthur, R.P. & Morris, P.J. Mechanisms of allograft rejection: the roles of cytotoxic T-cells and delayed-type hypersensitivity. Immunol. Rev. 77, 167–184 (1984).

    Article  CAS  Google Scholar 

  25. Hall, B. M., Cells mediating allograft rejection. Transplantation 51, 1141–1151 (1991).

    Article  CAS  Google Scholar 

  26. Frey, A.B. Rat mammary adenocarcinoma 13762 expressing IFN-gamma elicits antitumor CD4+ MHC class II-restricted T cells that are cytolytic in vitro and tumoricidal in vivo. J. Immunol. 154, 4613–4622 (1995).

    CAS  PubMed  Google Scholar 

  27. Mumberg, D. et al. CD4+ T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-γ. Immunology 96, 8633–8638 (1999).

    CAS  Google Scholar 

  28. Fleming, K.A. et al. Distribution of HLA class 1 antigens in normal human tissue and in mammary cancer. J. Clin. Pathol. 34, 779–784 (1981).

    Article  CAS  Google Scholar 

  29. Daar, A.S. & Fabre, J.W. The membrane antigens of human colorectal cancer cells: demonstration with monoclonal antibodies of heterogeneity within and between tumors and of anomalous expression of HLA-DR. Eur. J. Cancer. Clin. Oncol. 19, 209–220 (1983).

    Article  CAS  Google Scholar 

  30. Koopman, L.A. et al. Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J. Exp. Med. 191, 961–975 (2000).

    Article  CAS  Google Scholar 

  31. Fangmann, J., Dalchau, R. & Fabre, J.W. Rejection of skin allografts by indirect allorecognition of donor class I MHC peptides. J. Exp. Med. 175, 1521–1529 (1992).

    Article  CAS  Google Scholar 

  32. Mitchison, N.A. & O'Malley, C. Three cell-type clusters of T cells with antigen-presenting cells best explain the epitope linkage and noncognate requirements of the in vivo cytolytic response. Eur. J. Immunol. 17, 1579–1583 (1987).

    Article  CAS  Google Scholar 

  33. Gong, J. et al. Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J. Immunol. 165, 1705–1711 (2000).

    Article  CAS  Google Scholar 

  34. Steimle, V., Otten, L.A., Zufferey, M. & Mach, B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75, 135–146 (1993).

    Article  CAS  Google Scholar 

  35. Lahn, M. et al. Processing of tumor tissues for vaccination with autologous tumor cells. Eur. Surg. Res. 29, 292–302 (1997).

    Article  CAS  Google Scholar 

  36. Kim, B.S. Tumor-specific immunity induced by somatic hybrids. II. Elicitation of enhanced immunity against the parent plasmacytoma. J. Immunol. 123, 739–744 (1979).

    CAS  PubMed  Google Scholar 

  37. Payelle, B., Poupon, M.F. & Lespinats, G. Adoptive transfer of immunity induced by semi-allogeneic hybrid cells, against a murine fribrosarcoma. Int. J. Cancer 27, 783–788 (1981).

    Article  CAS  Google Scholar 

  38. Toffaletti, D.L., Darrow, T.L. & Scott, D.W. Augmentation of syngeneic tumor-specific immunity by semiallogeneic cell hybrids. J. Immunol. 130, 2982–2986 (1983).

    CAS  PubMed  Google Scholar 

  39. Newton, D.A., Romano, C. & Gattoni-Celli, S. Semiallogeneic cell hybrids as therapeutic vaccines for cancer. J. Immunother. 23, 246–254 (2000).

    Article  CAS  Google Scholar 

  40. Newton, D.A. et al. Semiallogeneic cancer vaccines formulated with granulocyte-macrophage colony-stimulating factor for patients with metastatic gastrointestinal adenocarcinomas: a pilot phase I study. J. Immunother. 24, 19–26 (2001).

    Article  CAS  Google Scholar 

  41. Grene, E. et al. Semi-allogeneic cell hybrids stimulate HIV-1 envelope-specific cytotoxic T lymphocytes. AIDS 14, 1497–1506 (2000).

    Article  CAS  Google Scholar 

  42. Millar, J.W., Hunter, A.M. & Horne, N.W. Intrapleural immunotherapy with Corynebacterium parvum in recurrent malignant pleural effusions. Thorax 35, 856–858 (1980).

    Article  CAS  Google Scholar 

  43. Thatcher, N. et al. Moderate to high dose cyclophosphamide and intercalated Corynebacterium parvum in patients with metastatic lung cancer. Br. J. Dis. Chest 78, 89–97 (1984).

    Article  CAS  Google Scholar 

  44. Morales, A. & Endinger, D. Intracavitory BCG in the treatment of superficial bladder tumors. J. Urol. 116, 180 (1976).

    Article  CAS  Google Scholar 

  45. Beverly, B., Kang, S.M., Lenardo, M.J. & Schwartz, R.H. Reversal of in vitro T cell clonal anergy by IL-2 stimulation. Int. Immunol. 4, 661–667 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of the British Heart Foundation, the Wellcome Trust, the Biotechnology and Biological Sciences Research Council and the Welton Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabre, J. The allogeneic response and tumor immunity. Nat Med 7, 649–652 (2001). https://doi.org/10.1038/89008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/89008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing