Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

2-Gy whole-body irradiation significantly alters the balance of CD4+CD25T effector cells and CD4+CD25+Foxp3+T regulatory cells in mice

Abstract

CD4+CD25+ T regulatory (Treg) cells are critical in inducing and maintaining immunological self-tolerance as well as transplant tolerance. The effect of low doses of whole-body irradiation (WBI) on CD4+CD25+Foxp3+ Treg cells has not been determined. The proportion, phenotypes and function of CD4+CD25+ Treg cells were investigated 0.5, 5 and 15 days after euthymic, thymectomized or allogeneic bone marrow transplanted C57BL/6 mice received 2-Gy γ-rays of WBI. The 2-Gy WBI significantly enhanced the ratios of CD4+CD25+ Treg cells and CD4+CD25+Foxp3+ Treg cells to CD4+ T cells in peripheral blood, lymph nodes, spleens and thymi of mice. The CD4+CD25+ Treg cells of the WBI-treated mice showed immunosuppressive activities on the immune response of CD4+CD25 T effector cells to alloantigens or mitogens as efficiently as the control mice. Furthermore, 2-Gy γ-ray WBI significantly increased the percentage of CD4+CD25+Foxp3+ Treg cells in the periphery of either thymectomized mice or allogeneic bone marrow transplanted mice. The in vitro assay showed that ionizing irradiation induced less cell death in CD4+CD25+Foxp3+ Treg cells than in CD4+CD25 T cells. Thus, a low dose of WBI could significantly enhance the level of functional CD4+CD25+Foxp3+ Treg cells in the periphery of naive or immunized mice. The enhanced proportion of CD4+CD25+Foxp3+ Treg cells in the periphery by a low dose of WBI may make hosts more susceptible to immune tolerance induction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M . Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–1164.

    CAS  PubMed  Google Scholar 

  2. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001; 182: 18–32.

    Article  CAS  Google Scholar 

  3. Piccirillo CA, Shevach EM . Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 2001; 167: 1137–1140.

    Article  CAS  Google Scholar 

  4. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z et al. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 2006; 212: 8–27.

    Article  CAS  Google Scholar 

  5. Toda A, Piccirillo CA . Development and function of naturally occurring CD4+CD25+ regulatory T cells. J Leukoc Biol 2006; 80: 458–470.

    Article  CAS  Google Scholar 

  6. Sakaguchi S . Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531–562.

    Article  CAS  Google Scholar 

  7. Hiura T, Kagamu H, Miura S, Ishida A, Tanaka H, Tanaka J et al. Both regulatory T cells and antitumor effector T cells are primed in the same draining lymph nodes during tumor progression. J Immunol 2005; 175: 5058–5066.

    Article  CAS  Google Scholar 

  8. Fontenot JD, Gavin MA, Rudensky AY . Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330–336.

    Article  CAS  Google Scholar 

  9. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  Google Scholar 

  10. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY . Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005; 22: 329–341.

    Article  CAS  Google Scholar 

  11. d'Hennezel E, Ben-Shoshan M, Ochs HD, Torgerson TR, Russell LJ, Lejtenyi C et al. FOXP3 forkhead domain mutation and regulatory T cells in the IPEX syndrome. N Engl J Med 2009; 361: 1710–1713.

    Article  CAS  Google Scholar 

  12. Le Bras S, Geha RS . IPEX and the role of Foxp3 in the development and function of human Tregs. J Clin Invest 2006; 116: 1473–1475.

    Article  CAS  Google Scholar 

  13. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001; 27: 18–20.

    Article  CAS  Google Scholar 

  14. Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 2007; 204: 57–63.

    Article  CAS  Google Scholar 

  15. Sakaguchi S . Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6: 345–352.

    Article  CAS  Google Scholar 

  16. Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 2004; 16: 1643–1656.

    Article  CAS  Google Scholar 

  17. Khattri R, Cox T, Yasayko SA, Ramsdell F . An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4: 337–342.

    Article  CAS  Google Scholar 

  18. Ramsdell F . Foxp3 and natural regulatory T cells: key to a cell lineage? Immunity 2003; 19: 165–168.

    Article  CAS  Google Scholar 

  19. Zhang C, Todorov I, Lin CL, Atkinson M, Kandeel F, Forman S et al. Elimination of insulitis and augmentation of islet beta cell regeneration via induction of chimerism in overtly diabetic NOD mice. Proc Natl Acad Sci USA 2007; 104: 2337–2342.

    Article  CAS  Google Scholar 

  20. Kudo-Saito C, Schlom J, Camphausen K, Coleman CN, Hodge JW . The requirement of multimodal therapy (vaccine, local tumor radiation, and reduction of suppressor cells) to eliminate established tumors. Clin Cancer Res 2005; 11: 4533–4544.

    Article  CAS  Google Scholar 

  21. Cunha-Rodrigues M, Portugal S, Febbraio M, Mota MM . Bone marrow chimeric mice reveal a dual role for CD36 in Plasmodium berghei ANKA infection. Malar J 2007; 6: 32.

    Article  Google Scholar 

  22. Zhang SX, Geddes JW, Owens JL, Holmberg EG . X-irradiation reduces lesion scarring at the contusion site of adult rat spinal cord. Histol Histopathol 2005; 20: 519–530.

    CAS  PubMed  Google Scholar 

  23. Kajioka EH, Andres ML, Li J, Mao XW, Moyers MF, Nelson GA et al. Acute effects of whole-body proton irradiation on the immune system of the mouse. Radiat Res 2000; 153: 587–594.

    Article  CAS  Google Scholar 

  24. Park HR, Jo SK, Paik SG . The NK1.1+ T cells alive in irradiated mice play an important role in a Th1/Th2 balance. Int J Radiat Biol 2006; 82: 161–170.

    Article  CAS  Google Scholar 

  25. Pecaut MJ, Nelson GA, Gridley DS . Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs. In Vivo 2001; 15: 195–208.

    CAS  PubMed  Google Scholar 

  26. Tsukimoto M, Nakatsukasa H, Sugawara K, Yamashita K, Kojima S . Repeated 0.5-Gy gamma irradiation attenuates experimental autoimmune encephalomyelitis with up-regulation of regulatory T cells and suppression of IL17 production. Radiat Res 2008; 170: 429–436.

    Article  CAS  Google Scholar 

  27. Qu Y, Jin S, Zhang A, Zhang B, Shi X, Wang J et al. Gamma-ray resistance of regulatory CD4+CD25+Foxp3+ T cells in mice. Radiat Res 2010; 173: 148–157.

    Article  CAS  Google Scholar 

  28. Liu R, Xiong S, Zhang L, Chu Y . Enhancement of antitumor immunity by low-dose total body irradiationis associated with selectively decreasing the proportion and number of T regulatory cells. Cell Mol Immunol 2010; 7: 157–162.

    Article  CAS  Google Scholar 

  29. Kipnis J, Avidan H, Markovich Y, Mizrahi T, Hauben E, Prigozhina TB et al. Low-dose gamma-irradiation promotes survival of injured neurons in the central nervous system via homeostasis-driven proliferation of T cells. Eur J Neurosci 2004; 19: 1191–1198.

    Article  Google Scholar 

  30. Sun Y, Li H, Langnas AN, Zhao Y . Altered allogeneic immune responses in middle-aged mice. Cell Mol Immunol 2004; 1: 440–446.

    CAS  PubMed  Google Scholar 

  31. Sun Z, Zhao L, Wang H, Sun L, Yi H, Zhao Y . Presence of functional mouse regulatory CD4+CD25+ T cells in xenogeneic neonatal porcine thymus-grafted athymic mice. Am J Transplant 2006; 6: 2841–2850.

    Article  CAS  Google Scholar 

  32. Sun Y, Ge BS, Kasai M, Diffendaffer C, Parks N, Li H et al. Induction of regulatory T cells from mature T cells by allogeneic thymic epithelial cells in vitro. Transpl Int 2006; 19: 404–414.

    Article  CAS  Google Scholar 

  33. Yi H, Zhen Y, Zeng C, Zhang L, Zhao Y . Depleting anti-CD4 monoclonal antibody (GK1.5) treatment: influence on regulatory CD4+CD25+Foxp3+ T cells in mice. Transplantation 2008; 85: 1167–1174.

    Article  CAS  Google Scholar 

  34. Wang H, Zhao L, Sun Z, Sun L, Zhang B, Zhao Y . A potential side effect of cyclosporin A: inhibition of CD4+CD25+ regulatory T cells in mice. Transplantation 2006; 82: 1484–1492.

    Article  CAS  Google Scholar 

  35. Zhao L, Sun L, Wang H, Ma H, Liu G, Zhao Y . Changes of CD4+CD25+Foxp3+ regulatory T cells in aged Balb/c mice. J Leukoc Biol 2007; 81: 1386–1394.

    Article  CAS  Google Scholar 

  36. Jones CM, Callaghan JM, Gleeson PA, Mori Y, Masuda T, Toh BH . The parietal cell autoantigens recognized in neonatal thymectomy-induced murine gastritis are the alpha and beta subunits of the gastric proton pump [corrected]. Gastroenterology 1991; 101: 287–294.

    Article  CAS  Google Scholar 

  37. Zhao Y, Swenson K, Sergio JJ, Arn JS, Sachs DH, Sykes M . Skin graft tolerance across a discordant xenogeneic barrier. Nat Med 1996; 2: 1211–1216.

    Article  CAS  Google Scholar 

  38. Yao Z, Liu Y, Jones J, Strober S . Differences in Bcl-2 expression by T-cell subsets alter their balance after in vivo irradiation to favor CD4+Bcl-2hi NKT cells. Eur J Immunol 2009; 39: 763–775.

    Article  CAS  Google Scholar 

  39. Piccirillo CA, Thornton AM . Cornerstone of peripheral tolerance: naturally occurring CD4+CD25+ regulatory T cells. Trends Immunol 2004; 25: 374–380.

    Article  CAS  Google Scholar 

  40. Urashima T, Nagasawa H, Wang K, Adelstein SJ, Little JB, Kassis AI . Induction of apoptosis in human tumor cells after exposure to Auger electrons: comparison with gamma-ray exposure. Nucl Med Biol 2006; 33: 1055–1063.

    Article  CAS  Google Scholar 

  41. Shinomiya N . New concepts in radiation-induced apoptosis: ‘premitotic apoptosis’ and ‘postmitotic apoptosis’. J Cell Mol Med 2001; 5: 240–253.

    Article  CAS  Google Scholar 

  42. Taibi N, Aka P, Kirsch-Volders M, Bourgeois P, Fruhling J, Szpireer C . Radiobiological effect of 99mTechnetium-MIBI in human peripheral blood lymphocytes: ex vivo study using micronucleus/FISH assay. Cancer Lett 2006; 233: 68–78.

    Article  CAS  Google Scholar 

  43. Sprung CN, Chao M, Leong T, McKay MJ . Chromosomal radiosensitivity in two cell lineages derived from clinically radiosensitive cancer patients. Clin Cancer Res 2005; 11: 6352–6358.

    Article  CAS  Google Scholar 

  44. Park HR, Jo SK, Paik SG . Factors effecting the Th2-like immune response after gamma-irradiation: low production of IL-12 heterodimer in antigen-presenting cells and small expression of the IL-12 receptor in T cells. Int J Radiat Biol 2005; 81: 221–231.

    Article  CAS  Google Scholar 

  45. Chen X, Murakami T, Oppenheim JJ, Howard OM . Differential response of murine CD4+CD25+ and CD4+CD25 T cells to dexamethasone-induced cell death. Eur J Immunol 2004; 34: 859–869.

    Article  CAS  Google Scholar 

  46. Banz A, Pontoux C, Papiernik M . Modulation of Fas-dependent apoptosis: a dynamic process controlling both the persistence and death of CD4 regulatory T cells and effector T cells. J Immunol 2002; 169: 750–757.

    Article  CAS  Google Scholar 

  47. Pati N, Ghosh S, Hessner MJ, Khoo HJ, Wang X . Difference in gene expression profiles between human CD4+CD25+ and CD4+CD25 T cells. Ann NY Acad Sci 2003; 1005: 279–283.

    Article  Google Scholar 

  48. Akbar AN, Vukmanovic-Stejic M, Taams LS, Macallan DC . The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol 2007; 7: 231–237.

    Article  CAS  Google Scholar 

  49. Feuerer M, Hill JA, Mathis D, Benoist C . Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol 2009; 10: 689–695.

    Article  CAS  Google Scholar 

  50. Sykes M . Mixed chimerism and transplant tolerance. Immunity 2001; 14: 417–424.

    Article  CAS  Google Scholar 

  51. Comerci GD Jr, Williams TM, Kellie S . Immune tolerance after total lymphoid irradiation for heart transplantation: immunosuppressant-free survival for 8 years. J Heart Lung Transplant 2009; 28: 743–745.

    Article  Google Scholar 

  52. Sharabi Y, Abraham VS, Sykes M, Sachs DH . Mixed allogeneic chimeras prepared by a non-myeloablative regimen: requirement for chimerism to maintain tolerance. Bone Marrow Transplant 1992; 9: 191–197.

    CAS  PubMed  Google Scholar 

  53. Tomita Y, Khan A, Sykes M . Mechanism by which additional monoclonal antibody (mAB) injections overcome the requirement for thymic irradiation to achieve mixed chimerism in mice receiving bone marrow transplantation after conditioning with anti-T cell mABs and 3-Gy whole body irradiation. Transplantation 1996; 61: 477–485.

    Article  CAS  Google Scholar 

  54. Higuchi M, Zeng D, Shizuru J, Gworek J, Dejbakhsh-Jones S, Taniguchi M et al. Immune tolerance to combined organ and bone marrow transplants after fractionated lymphoid irradiation involves regulatory NK T cells and clonal deletion. J Immunol 2002; 169: 5564–5570.

    Article  CAS  Google Scholar 

  55. Cao M, Cabrera R, Xu Y, Liu C, Nelson D . Gamma irradiation alters the phenotype and function of CD4+CD25+ regulatory T cells. Cell Biol Int 2009; 33: 565–571.

    Article  CAS  Google Scholar 

  56. Warnecke G, Avsar M, Morancho M, Peters C, Thissen S, Kruse B et al. Preoperative low-dose irradiation promotes long-term allograft acceptance and induces regulatory T cells in a porcine model of pulmonary transplantation. Transplantation 2006; 82: 93–101.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Yiying Luo for his expertise and assistance on the thymectomy experiments, Ms Jianxia Peng and Ms Jing Wang for their expertise and technical assistance, and Ms Qinghuan Li for her excellent laboratory management. This work was supported by grants from the Chinese Academy of Sciences (KJCX2-YW-L08, YZ) and the National Natural Science Foundation, China (30630060, YZ).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Y., Zhang, B., Liu, S. et al. 2-Gy whole-body irradiation significantly alters the balance of CD4+CD25T effector cells and CD4+CD25+Foxp3+T regulatory cells in mice. Cell Mol Immunol 7, 419–427 (2010). https://doi.org/10.1038/cmi.2010.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.45

Keywords

This article is cited by

Search

Quick links