Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

CCL5 as a potential immunotherapeutic target in triple-negative breast cancer

Abstract

Breast cancer (BC) is a leading cause of mortality among women in the world. To date, a number of molecules have been established as disease status indicators and therapeutic targets. The best known among them are estrogen receptor-α (ER-α), progesterone receptor (PR) and HER-2/neu. About 15%–20% BC patients do not respond effectively to therapies targeting these classes of tumor-promoting factors. Thus, additional targets are strongly and urgently sought after in therapy for human BCs negative for ER, PR and HER-2, the so-called triple-negative BC (TNBC). Recent clinical work has revealed that CC chemokine ligand 5 (CCL5) is strongly associated with the progression of BC, particularly TNBC. How CCL5 contributes to the development of TNBC is not well understood. Experimental animal studies have begun to address the mechanistic issue. In this article, we will review the clinical and laboratory work in this area that has led to our own hypothesis that targeting CCL5 in TNBCs will have favorable therapeutic outcomes with minimal adverse impact on the general physiology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Coussens LM, Werb Z . Inflammation and cancer. Nature 2002; 420: 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK . Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 2002; 62: 1832–1837.

    CAS  PubMed  Google Scholar 

  3. Manes S, Mira E, Colomer R, Montero S, Real LM, Gomez-Mouton C et al. CCR5 expression influences the progression of human breast cancer in a p53-dependent manner. J Exp Med 2003; 198: 1381–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schall TJ, Jongstra J, Dyer BJ, Jorgensen J, Clayberger C, Davis MM et al. A human T cell-specific molecule is a member of a new gene family. J Immunol 1988; 141: 1018–1025.

    CAS  PubMed  Google Scholar 

  5. Song A, Chen YF, Thamatrakoln K, Storm TA, Krensky AM . RFLAT-1: a new zinc finger transcription factor that activates RANTES gene expression in T lymphocytes. Immunity 1999; 10: 93–103.

    Article  PubMed  Google Scholar 

  6. Song A, Nikolcheva T, Krensky AM . Transcriptional regulation of RANTES expression in T lymphocytes. Immunol Rev 2000; 177: 236–245.

    Article  CAS  PubMed  Google Scholar 

  7. Maghazachi AA, Al-Aoukaty A, Schall TJ . CC chemokines induce the generation of killer cells from CD56+ cells. Eur J Immunol 1996; 26: 315–319.

    Article  CAS  PubMed  Google Scholar 

  8. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P . Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270: 1811–1815.

    Article  CAS  PubMed  Google Scholar 

  9. Pakianathan DR, Kuta EG, Artis DR, Skelton NJ, Hebert CA . Distinct but overlapping epitopes for the interaction of a CC-chemokine with CCR1, CCR3 and CCR5. Biochemistry 1997; 36: 9642–9648.

    Article  CAS  PubMed  Google Scholar 

  10. Simeoni E, Winkelmann BR, Hoffmann MM, Fleury S, Ruiz J, Kappenberger L et al. Association of RANTES G-403A gene polymorphism with increased risk of coronary arteriosclerosis. Eur Heart J 2004; 25: 1438–1446.

    Article  CAS  PubMed  Google Scholar 

  11. Gade-Andavolu R, Comings DE, MacMurray J, Vuthoori RK, Tourtellotte WW, Nagra RM et al. RANTES: a genetic risk marker for multiple sclerosis. Mult Scler 2004; 10: 536–539.

    Article  CAS  PubMed  Google Scholar 

  12. Wang CR, Guo HR, Liu MF . RANTES promoter polymorphism as a genetic risk factor for rheumatoid arthritis in the Chinese. Clin Exp Rheumatol 2005; 23: 379–384.

    CAS  PubMed  Google Scholar 

  13. Makki RF, Al Sharif F, Gonzalez-Gay MA, Garcia-Porrua C, Ollier WE, Hajeer AH . RANTES gene polymorphism in polymyalgia rheumatica, giant cell arteritis and rheumatoid arthritis. Clin Exp Rheumatol 2000; 18: 391–393.

    CAS  PubMed  Google Scholar 

  14. Fryer AA, Spiteri MA, Bianco A, Hepple M, Jones PW, Strange RC et al. The −403 G→A promoter polymorphism in the RANTES gene is associated with atopy and asthma. Genes Immun 2000; 1: 509–514.

    Article  CAS  PubMed  Google Scholar 

  15. Al-Abdulhadi SA, Helms PJ, Main M, Smith O, Christie G . Preferential transmission and association of the −403 G→A promoter RANTES polymorphism with atopic asthma. Genes Immun 2005; 6: 24–30.

    Article  CAS  PubMed  Google Scholar 

  16. Yao TC, Kuo ML, See LC, Chen LC, Yan DC, Ou LS et al. The RANTES promoter polymorphism: a genetic risk factor for near-fatal asthma in Chinese children. J Allergy Clin Immunol 2003; 111: 1285–1292.

    Article  CAS  PubMed  Google Scholar 

  17. Hizawa N, Yamaguchi E, Konno S, Tanino Y, Jinushi E, Nishimura M . A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma. Am J Respir Crit Care Med 2002; 166: 686–690.

    Article  PubMed  Google Scholar 

  18. Kozma GT, Falus A, Bojszko A, Krikovszky D, Szabo T, Nagy A et al. Lack of association between atopic eczema/dermatitis syndrome and polymorphisms in the promoter region of RANTES and regulatory region of MCP-1. Allergy 2002; 57: 160–163.

    Article  CAS  PubMed  Google Scholar 

  19. Hellier S, Frodsham AJ, Hennig BJ, Klenerman P, Knapp S, Ramaley P et al. Association of genetic variants of the chemokine receptor CCR5 and its ligands, RANTES and MCP-2, with outcome of HCV infection. Hepatology 2003; 38: 1468–1476.

    Article  CAS  PubMed  Google Scholar 

  20. Promrat K, Liang TJ . Chemokine systems and hepatitis C virus infection: is truth in the genes of the beholders? Hepatology 2003; 38: 1359–1362.

    Article  CAS  PubMed  Google Scholar 

  21. Simeoni E, Vassalli G, Seydoux C, Ramsay D, Noll G, von Segesser LK et al. CCR5, RANTES and CX3CR1 polymorphisms: possible genetic links with acute heart rejection. Transplantation 2005; 80: 1309–1315.

    Article  CAS  PubMed  Google Scholar 

  22. Liao CH, Yao TC, Chung HT, See LC, Kuo ML, Huang JL . Polymorphisms in the promoter region of RANTES and the regulatory region of monocyte chemoattractant protein-1 among Chinese children with systemic lupus erythematosus. J Rheumatol 2004; 31: 2062–2067.

    CAS  PubMed  Google Scholar 

  23. Ye DQ, Yang SG, Li XP, Hu YS, Yin J, Zhang GQ et al. Polymorphisms in the promoter region of RANTES in Han Chinese and their relationship with systemic lupus erythematosus. Arch Dermatol Res 2005; 297: 108–113.

    Article  CAS  PubMed  Google Scholar 

  24. Donlon TA, Krensky AM, Wallace MR, Collins FS, Lovett M, Clayberger C . Localization of a human T-cell-specific gene, RANTES (D17S136E), to chromosome 17q11.2–q12. Genomics 1990; 6: 548–553.

    Article  CAS  PubMed  Google Scholar 

  25. Gu M, Ghafari S, Zhao M . Fluorescence in situ hybridization for HER-2/neu amplification of breast carcinoma in archival fine needle aspiration biopsy specimens. Acta Cytol 2005; 49: 471–476.

    Article  PubMed  Google Scholar 

  26. Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M et al. The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res 2002; 62: 1093–1102.

    CAS  PubMed  Google Scholar 

  27. Niwa Y, Akamatsu H, Niwa H, Sumi H, Ozaki Y, Abe A . Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clin Cancer Res 2001; 7: 285–289.

    CAS  PubMed  Google Scholar 

  28. Nouh MA, Eissa SA, Zaki SA, El-Maghraby SM, Kadry DY . Importance of serum IL-18 and RANTES as markers for breast carcinoma progression. J Egypt Natl Canc Inst 2005; 17: 51–55.

    Google Scholar 

  29. Bieche I, Lerebours F, Tozlu S, Espie M, Marty M, Lidereau R . Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature. Clin Cancer Res 2004; 10: 6789–6795.

    Article  CAS  PubMed  Google Scholar 

  30. Wigler N, Shina S, Kaplan O, Luboshits G, Chaitchik S, Keydar I et al. Breast carcinoma: a report on the potential usage of the CC chemokine RANTES as a marker for a progressive disease. Isr Med Assoc J 2002; 4: 940–943.

    PubMed  Google Scholar 

  31. Sauer G, Schneiderhan-Marra N, Kazmaier C, Hutzel K, Koretz K, Muche R et al. Prediction of nodal involvement in breast cancer based on multiparametric protein analyses from preoperative core needle biopsies of the primary lesion. Clin Cancer Res 2008; 14: 3345–3353.

    Article  CAS  PubMed  Google Scholar 

  32. Luboshits G, Shina S, Kaplan O, Engelberg S, Nass D, Lifshitz-Mercer B et al. Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 1999; 59: 4681–4687.

    CAS  PubMed  Google Scholar 

  33. Yaal-Hahoshen N, Shina S, Leider-Trejo L, Barnea I, Shabtai EL, Azenshtein E et al. The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clin Cancer Res 2006; 12: 4474–4480.

    Article  CAS  PubMed  Google Scholar 

  34. Soria G, Yaal-Hahoshen N, Azenshtein E, Shina S, Leider-Trejo L, Ryvo L et al. Concomitant expression of the chemokines RANTES and MCP-1 in human breast cancer: a basis for tumor-promoting interactions. Cytokine 2008; 44: 191–200.

    Article  CAS  PubMed  Google Scholar 

  35. Soria G, Ofri-Shahak M, Haas I, Yaal-Hahoshen N, Leider-Trejo L, Leibovich-Rivkin T et al. Inflammatory mediators in breast cancer: coordinated expression of TNFalpha & IL-1beta with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer 2011; 11: 130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin Y, Huang R, Chen L, Li S, Shi Q, Jordan C et al. Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int J Cancer 2004; 109: 507–515.

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Hively WP, Varmus HE . Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 2000; 19: 1002–1009.

    Article  CAS  PubMed  Google Scholar 

  38. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  39. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Irvin WJ Jr, Carey LA . What is triple-negative breast cancer? Eur J Cancer 2008; 44: 2799–2805.

    Article  CAS  PubMed  Google Scholar 

  41. Collins LC, Martyniak A, Kandel MJ, Stadler ZK, Masciari S, Miron A et al. Basal cytokeratin and epidermal growth factor receptor expression are not predictive of BRCA1 mutation status in women with triple-negative breast cancers. Am J Surg Pathol 2009; 33: 1093–1097.

    Article  PubMed  Google Scholar 

  42. Iglehart JD, Silver DP . Synthetic lethality—a new direction in cancer-drug development. N Engl J Med 2009; 361: 189–191.

    Article  CAS  PubMed  Google Scholar 

  43. Miller FR, Miller BE, Heppner GH . Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability. Invasion Metastasis 1983; 33: 22–31.

    Google Scholar 

  44. Pulaski BA, Ostrand-Rosenberg S . Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines. Cancer Res 1998; 58: 1486–1493.

    CAS  PubMed  Google Scholar 

  45. Mi Z, Guo H, Wai PY, Gao C, Wei J, Kuo PC . Differential osteopontin expression in phenotypically distinct subclones of murine breast cancer cells mediates metastatic behavior. J Biol Chem 2004; 279: 46659–46667.

    Article  CAS  PubMed  Google Scholar 

  46. Aslakson CJ, Miller FR . Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52: 1399–1405.

    CAS  PubMed  Google Scholar 

  47. Morecki S, Yacovlev L, Slavin S . Effect of indomethacin on tumorigenicity and immunity induction in a murine model of mammary carcinoma. Int J Cancer 1998; 75: 894–899.

    Article  CAS  PubMed  Google Scholar 

  48. Ostrand-Rosenberg S, Grusby MJ, Clements VK . Cutting edge: STAT6-deficient mice have enhanced tumor immunity to primary and metastatic mammary carcinoma. J Immunol 2000; 165: 6015–6019.

    Article  CAS  PubMed  Google Scholar 

  49. Coveney E, Wheatley GH 3rd, Lyerly HK . Active immunization using dendritic cells mixed with tumor cells inhibits the growth of primary breast cancer. Surgery 1997; 122: 228–234.

    Article  CAS  PubMed  Google Scholar 

  50. Rakhmilevich AL, Janssen K, Hao Z, Sondel PM, Yang NS . Interleukin-12 gene therapy of a weakly immunogenic mouse mammary carcinoma results in reduction of spontaneous lung metastases via a T- cell-independent mechanism. Cancer Gene Ther 2000; 7: 826–838.

    Article  CAS  PubMed  Google Scholar 

  51. Shi X, Cao S, Mitsuhashi M, Xiang Z, Ma X . Genome-wide analysis of molecular changes in IL-12-induced control of mammary carcinoma via IFN-gamma-independent mechanisms. J Immunol 2004; 172: 4111–4122.

    Article  CAS  PubMed  Google Scholar 

  52. Pulaski BA, Clements VK, Pipeling MR, Ostrand-Rosenberg S . Immunotherapy with vaccines combining MHC class II/CD80+ tumor cells with interleukin-12 reduces established metastatic disease and stimulates immune effectors and monokine induced by interferon gamma. Cancer Immunol Immunother 2000; 49: 34–45.

    Article  CAS  PubMed  Google Scholar 

  53. Christensen CR, Klingelhofer J, Tarabykina S, Hulgaard EF, Kramerov D, Lukanidin E . Transcription of a novel mouse semaphorin gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines. Cancer Res 1998; 58: 1238–1244.

    CAS  PubMed  Google Scholar 

  54. Lin P, Buxton JA, Acheson A, Radziejewski C, Maisonpierre PC, Yancopoulos GD et al. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci USA 1998; 95: 8829–8834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang H, Mohammad RM, Werdell J, Shekhar PV . p53 and protein kinase C independent induction of growth arrest and apoptosis by bryostatin 1 in a highly metastatic mammary epithelial cell line: in vitro versus in vivo activity. Int J Mol Med 1998; 1: 915–923.

    CAS  PubMed  Google Scholar 

  56. Morecki S, Yacovlev E, Gelfand Y, Trembovler V, Shohami E, Slavin S . Induction of antitumor immunity by indomethacin. Cancer Immunol Immunother 2000; 48: 613–620.

    Article  CAS  PubMed  Google Scholar 

  57. Adler EP, Lemken CA, Katchen NS, Kurt RA . A dual role for tumor-derived chemokine RANTES (CCL5). Immunol Lett 2003; 90: 187–194.

    Article  CAS  PubMed  Google Scholar 

  58. Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfoot AE, Balkwill FR . A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res 2003; 63: 8360–8365.

    CAS  PubMed  Google Scholar 

  59. Soria G, Ben-Baruch A . The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 2008; 267: 271–285.

    Article  CAS  PubMed  Google Scholar 

  60. Kurt RA, Baher A, Wisner KP, Tackitt S, Urba WJ . Chemokine receptor desensitization in tumor-bearing mice. Cell Immunol 2001; 207: 81–88.

    Article  CAS  PubMed  Google Scholar 

  61. Liu J, Guan X, Ma X . Interferon regulatory factor 1 is an essential and direct transcriptional activator for interferon γ-induced RANTES/CCl5 expression in macrophages. J Biol Chem 2005; 280: 24347–24355.

    Article  CAS  PubMed  Google Scholar 

  62. Ma X, Chow JM, Gri G, Carra G, Gerosa F, Wolf SF et al. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med 1996; 183: 147–157.

    Article  CAS  PubMed  Google Scholar 

  63. Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P, Kroemer G . Targeting NF-kappaB in hematologic malignancies. Cell Death Differ 2006; 13: 748–758.

    Article  CAS  PubMed  Google Scholar 

  64. Liu J, Cao S, Herman LM, Ma X . Differential regulation of interleukin (IL)-12 p35 and p40 gene expression and interferon (IFN)-gamma-primed IL-12 production by IFN regulatory factor 1. J Exp Med 2003; 198: 1265–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Olive M, Krylov D, Echlin DR, Gardner K, Taparowsky E, Vinson C . A dominant negative to activation protein-1 (AP1) that abolishes DNA binding and inhibits oncogenesis. J Biol Chem 1997; 272: 18586–18594.

    Article  CAS  PubMed  Google Scholar 

  66. Ammit AJ, Hoffman RK, Amrani Y, Lazaar AL, Hay DW, Torphy TJ et al. Tumor necrosis factor-alpha-induced secretion of RANTES and interleukin-6 from human airway smooth-muscle cells. Modulation by cyclic adenosine monophosphate. Am J Respir Cell Mol Biol 2000; 23: 794–802.

    Article  CAS  PubMed  Google Scholar 

  67. Hallsworth MP, Twort CH, Lee TH, Hirst SJ . beta2-adrenoceptor agonists inhibit release of eosinophil-activating cytokines from human airway smooth muscle cells. Br J Pharmacol 2001; 132: 729–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ammit AJ, Lazaar AL, Irani C, O'Neill GM, Gordon ND, Amrani Y et al. Tumor necrosis factor-alpha-induced secretion of RANTES and interleukin-6 from human airway smooth muscle cells: modulation by glucocorticoids and beta-agonists. Am J Respir Cell Mol Biol 2002; 26: 465–474.

    Article  CAS  PubMed  Google Scholar 

  69. Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD, Vinson C . A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Biol 1998; 18: 967–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mrowietz U, Schwenk U, Maune S, Bartels J, Kupper M, Fichtner I et al. The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice. Br J Cancer 1999; 79: 1025–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fischer M, Juremalm M, Olsson N, Backlin C, Sundstrom C, Nilsson K et al. Expression of CCL5/RANTES by Hodgkin and Reed–Sternberg cells and its possible role in the recruitment of mast cells into lymphomatous tissue. Int J Cancer 2003; 107: 197–201.

    Article  CAS  PubMed  Google Scholar 

  72. Mori N, Krensky AM, Ohshima K, Tomita M, Matsuda T, Ohta T et al. Elevated expression of CCL5/RANTES in adult T-cell leukemia cells: possible transactivation of the CCL5 gene by human T-cell leukemia virus type I tax. Int J Cancer 2004; 111: 548–557.

    Article  CAS  PubMed  Google Scholar 

  73. Negus RP, Stamp GW, Hadley J, Balkwill FR . Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C–C chemokines. Am J Pathol 1997; 150: 1723–1734.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kondo T, Ito F, Nakazawa H, Horita S, Osaka Y, Toma H . High expression of chemokine gene as a favorable prognostic factor in renal cell carcinoma. J Urol 2004; 171: 2171–2175.

    Article  CAS  PubMed  Google Scholar 

  75. Vaday GG, Peehl DM, Kadam PA, Lawrence DM . Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate 2006; 66: 124–134.

    Article  CAS  PubMed  Google Scholar 

  76. Tsukishiro S, Suzumori N, Nishikawa H, Arakawa A, Suzumori K . Elevated serum RANTES levels in patients with ovarian cancer correlate with the extent of the disorder. Gynecol Oncol 2006; 102: 542–545.

    Article  CAS  PubMed  Google Scholar 

  77. Ek S, Bjorck E, Hogerkorp CM, Nordenskjold M, Porwit-MacDonald A, Borrebaeck CA . Mantle cell lymphomas acquire increased expression of CCL4, CCL5 and 4-1BB-L implicated in cell survival. Int J Cancer 2006; 118: 2092–2097.

    Article  CAS  PubMed  Google Scholar 

  78. Moran CJ, Arenberg DA, Huang CC, Giordano TJ, Thomas DG, Misek DE et al. RANTES expression is a predictor of survival in stage I lung adenocarcinoma. Clin Cancer Res 2002; 8: 3803–3812.

    CAS  PubMed  Google Scholar 

  79. Jayasinghe MM, Golden JM, Nair P, O'Donnell CM, Werner MT, Kurt RA . Tumor-derived CCL5 does not contribute to breast cancer progression. Breast Cancer Res Treat 2008; 111: 511–521.

    Article  CAS  PubMed  Google Scholar 

  80. Agarwal A, Verma S, Burra U, Murthy NS, Mohanty NK, Saxena S . Flow cytometric analysis of Th1 and Th2 cytokines in PBMCs as a parameter of immunological dysfunction in patients of superficial transitional cell carcinoma of bladder. Cancer Immunol Immunother 2006; 55: 734–743.

    Article  CAS  PubMed  Google Scholar 

  81. Gabrilovich DI, Nagaraj S . Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Seung LP, Rowley DA, Dubey P, Schreiber H . Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci USA 1995; 92: 6254–6258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P et al. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 1999; 162: 5728–5737.

    CAS  PubMed  Google Scholar 

  84. Salvadori S, Martinelli G, Zier K . Resection of solid tumors reverses T cell defects and restores protective immunity. J Immunol 2000; 164: 2214–2220.

    Article  CAS  PubMed  Google Scholar 

  85. Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD et al. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 2003; 198: 1741–1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Danna EA, Sinha P, Gilbert M, Clements VK, Pulaski BA, Ostrand-Rosenberg S . Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease. Cancer Res 2004; 64: 2205–2211.

    Article  CAS  PubMed  Google Scholar 

  87. Serafini P, Borrello I, Bronte V . Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 2006; 16: 53–65.

    Article  CAS  PubMed  Google Scholar 

  88. Soria G, Ben-Baruch A . The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 2008; 267: 271–285.

    Article  CAS  PubMed  Google Scholar 

  89. Freund A, Chauveau C, Brouillet JP, Lucas A, Lacroix M, Licznar A et al. IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene 2003; 22: 256–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tyner JW, Uchida O, Kajiwara N, Kim EY, Patel AC, O'Sullivan MP et al. CCL5–CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat Med 2005; 11: 1180–1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Machado FS, Koyama NS, Carregaro V, Ferreira BR, Milanezi CM, Teixeira MM et al. CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi. J Infect Dis 2005; 191: 627–636.

    Article  CAS  PubMed  Google Scholar 

  92. Campbell LD, Stewart JN, Mead JR . Susceptibility to Cryptosporidium parvum infections in cytokine- and chemokine-receptor knockout mice. J Parasitol 2002; 88: 1014–1016.

    Article  PubMed  Google Scholar 

  93. Algood HM, Flynn JL . CCR5-deficient mice control Mycobacterium tuberculosis infection despite increased pulmonary lymphocytic infiltration. J Immunol 2004; 173: 3287–3296.

    Article  PubMed  Google Scholar 

  94. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996; 273: 1856–1862.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the grant support KG091243 from Susan G. Komen Breast Cancer Foundation to XM.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, D., Zhang, Y., Kim, HJ. et al. CCL5 as a potential immunotherapeutic target in triple-negative breast cancer. Cell Mol Immunol 10, 303–310 (2013). https://doi.org/10.1038/cmi.2012.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.69

Keywords

This article is cited by

Search

Quick links