Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

FOXP3+ regulatory T cells and their functional regulation

Abstract

FOXP3+ regulatory T (Treg) cells are critical in maintaining immune tolerance and homeostasis of the immune system. The molecular mechanisms underlying the stability, plasticity and functional activity of Treg cells have been much studied in recent years. Here, we summarize these intriguing findings, and provide insight into their potential use or manipulation during Treg cell therapy for the treatment of autoimmune diseases, graft-versus-host disease (GVHD) and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M . Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–1164.

    CAS  PubMed  Google Scholar 

  2. Wing K, Sakaguchi S . Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 2010; 11: 7–13.

    CAS  PubMed  Google Scholar 

  3. Littman DR, Rudensky AY . Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010; 140: 845–858.

    CAS  PubMed  Google Scholar 

  4. Campbell DJ, Koch MA . Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol 2011; 11: 119–130.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Feuerer M, Hill JA, Mathis D, Benoist C . Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol 2009; 10: 689–695.

    CAS  PubMed  Google Scholar 

  6. Fontenot JD, Gavin MA, Rudensky AY . Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330–336.

    CAS  PubMed  Google Scholar 

  7. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    CAS  PubMed  Google Scholar 

  8. Khattri R, Cox T, Yasayko SA, Ramsdell F . An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4: 337–342.

    CAS  PubMed  Google Scholar 

  9. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27: 68–73.

    CAS  PubMed  Google Scholar 

  10. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27: 20–21.

    CAS  PubMed  Google Scholar 

  11. Himmel ME, MacDonald KG, Garcia RV, Steiner TS, Levings MK . Helios+ and Helios− cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J Immunol 2013; 190: 2001–2008.

    CAS  PubMed  Google Scholar 

  12. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 2010; 184: 3433–3441.

    CAS  PubMed  Google Scholar 

  13. Yadav M, Louvet C, Davini D, Gardner JM, Martinez-Llordella M, Bailey-Bucktrout S et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med 2012; 209: 1713–1722, S1–S19.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 2014; 20: 62–68.

    CAS  PubMed  Google Scholar 

  15. Ogawa C, Tone Y, Tsuda M, Peter C, Waldmann H, Tone M . TGF-beta-mediated Foxp3 gene expression is cooperatively regulated by Stat5, Creb, and AP-1 through CNS2. J Immunol 2013; 192: 475–483.

    PubMed  Google Scholar 

  16. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY . Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 2010; 463: 808–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim HP, Leonard WJ . CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 2007; 204: 1543–1551.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang L, Liu Y, Han R, Beier UH, Thomas RM, Wells AD et al. Mbd2 promotes foxp3 demethylation and T-regulatory-cell function. Mol Cell Biol 2013; 33: 4106–4115.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009; 30: 899–911.

    CAS  PubMed  Google Scholar 

  20. Sakaguchi S, Miyara M, Costantino CM, Hafler DA . FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010; 10: 490–500.

    CAS  PubMed  Google Scholar 

  21. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 2009; 326: 986–991.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ . The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 2009; 10: 595–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 2009; 458: 351–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu F, Sharma S, Edwards J, Feigenbaum L, Zhu J . Dynamic expression of transcription factors T-bet and GATA-3 by regulatory T cells maintains immunotolerance. Nat Immunol 2015; 16: 197–206.

    CAS  PubMed  Google Scholar 

  25. Hori S . Developmental plasticity of Foxp3+ regulatory T cells. Curr Opin Immunol 2010; 22: 575–582.

    CAS  PubMed  Google Scholar 

  26. Zhou X, Bailey-Bucktrout S, Jeker LT, Bluestone JA . Plasticity of CD4+ FoxP3+ T cells. Curr Opin Immunol 2009; 21: 281–285.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Duarte JH, Zelenay S, Bergman ML, Martins AC, Demengeot J . Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol 2009; 39: 948–955.

    CAS  PubMed  Google Scholar 

  28. Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O, Honjo T et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 2009; 323: 1488–1492.

    CAS  PubMed  Google Scholar 

  29. Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 2009; 10: 1178–1184.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 2009; 10: 1000–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 2013; 39: 272–285.

    CAS  PubMed  Google Scholar 

  32. Liu X, Nguyen P, Liu W, Cheng C, Steeves M, Obenauer JC et al. T cell receptor CDR3 sequence but not recognition characteristics distinguish autoreactive effector and Foxp3+ regulatory T cells. Immunity 2009; 31: 909–920.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rubtsov YP, Niec RE, Josefowicz S, Li L, Darce J, Mathis D et al. Stability of the regulatory T cell lineage in vivo. Science 2010; 329: 1667–1671.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Komatsu N, Mariotti-Ferrandiz ME, Wang Y, Malissen B, Waldmann H, Hori S . Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci USA 2009; 106: 1903–1908.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 2013; 20: 62–68.

    PubMed  Google Scholar 

  36. Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I . Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 2008; 112: 2340–2352.

    CAS  PubMed  Google Scholar 

  37. Voo KS, Wang YH, Santori FR, Boggiano C, Wang YH, Arima K et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci USA 2009; 106: 4793–4798.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Oderup C, Cederbom L, Makowska A, Cilio CM, Ivars F . Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology 2006; 118: 240–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Serra P, Amrani A, Yamanouchi J, Han B, Thiessen S, Utsugi T et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 2003; 19: 877–889.

    CAS  PubMed  Google Scholar 

  40. Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 2008; 180: 5916–5926.

    CAS  PubMed  Google Scholar 

  41. Sarris M, Andersen KG, Randow F, Mayr L, Betz AG . Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 2008; 28: 402–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kearley J, Barker JE, Robinson DS, Lloyd CM . Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J Exp Med 2005; 202: 1539–1547.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F . An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999; 190: 995–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakamura K, Kitani A, Strober W . Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001; 194: 629–644.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Green EA, Gorelik L, McGregor CM, Tran EH, Flavell RA . CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc Natl Acad Sci USA 2003; 100: 10878–10883.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007; 450: 566–569.

    CAS  PubMed  Google Scholar 

  47. Bardel E, Larousserie F, Charlot-Rabiega P, Coulomb-L’Hermine A, Devergne O . Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. J Immunol 2008; 181: 6898–6905.

    CAS  PubMed  Google Scholar 

  48. Thornton AM, Shevach EM . CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188: 287–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. de la Rosa M, Rutz S, Dorninger H, Scheffold A . Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol 2004; 34: 2480–2488.

    CAS  PubMed  Google Scholar 

  50. Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 2007; 204: 1303–1310.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204: 1257–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR . T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J Immunol 2006; 177: 6780–6786.

    CAS  PubMed  Google Scholar 

  53. Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 2007; 104: 4571–4576.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Z, Lin F, Zhuo C, Deng G, Chen Z, Yin S et al. PIM1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. J Biol Chem 2014; 289: 26872–26881.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. van Loosdregt J, Fleskens V, Fu J, Brenkman AB, Bekker CP, Pals CE et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 2013; 39: 259–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 2011; 146: 772–784.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YY, Beekman JM, van Beekum O et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 2010; 115: 965–974.

    CAS  PubMed  Google Scholar 

  58. Kwon HS, Lim HW, Wu J, Schnolzer M, Verdin E, Ott M . Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells. J Immunol 2012; 188: 2712–2721.

    CAS  PubMed  Google Scholar 

  59. Morawski PA, Mehra P, Chen C, Bhatti T, Wells AD . Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J Biol Chem 2013; 288: 24494–24502.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nie H, Zheng Y, Li R, Guo TB, He D, Fang L et al Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat Med 2013; 19: 322–328.

    CAS  PubMed  Google Scholar 

  61. Li B, Samanta A, Song X, Furuuchi K, Iacono KT, Kennedy S et al. FOXP3 ensembles in T-cell regulation. Immunol Rev 2006; 212: 99–113.

    CAS  PubMed  Google Scholar 

  62. Li B, Samanta A, Song X, Iacono KT, Brennan P, Chatila TA et al. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol 2007; 19: 825–835.

    CAS  PubMed  Google Scholar 

  63. Song X, Li B, Xiao Y, Chen C, Wang Q, Liu Y et al. Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Rep 2012; 1: 665–675.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rudra D, deRoos P, Chaudhry A, Niec RE, Arvey A, Samstein RM et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 2012; 13: 1010–1019.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 2006; 108: 1571–1579.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kitoh A, Ono M, Naoe Y, Ohkura N, Yamaguchi T, Yaguchi H et al. Indispensable role of the Runx1–Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity 2009; 31: 609–620.

    CAS  PubMed  Google Scholar 

  67. Isomura I, Palmer S, Grumont RJ, Bunting K, Hoyne G, Wilkinson N et al. c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells. J Exp Med 2009; 206: 3001–3014.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ruan Q, Kameswaran V, Tone Y, Li L, Liou HC, Greene MI et al. Development of Foxp3+ regulatory t cells is driven by the c-Rel enhanceosome. Immunity 2009; 31: 932–940.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Long M, Park SG, Strickland I, Hayden MS, Ghosh S . Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 2009; 31: 921–931.

    CAS  PubMed  Google Scholar 

  70. Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A, Dong J et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur J Immunol 2007; 37: 2378–2389.

    CAS  PubMed  Google Scholar 

  71. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 2007; 5: e38.

    PubMed  PubMed Central  Google Scholar 

  72. Huehn J, Polansky JK, Hamann A . Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 2009; 9: 83–89.

    CAS  PubMed  Google Scholar 

  73. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 2006; 20: 62–68.

    Google Scholar 

  74. Samanta A, Li B, Song X, Bembas K, Zhang G, Katsumata M et al. TGF-beta and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proc Natl Acad Sci USA 2008; 105: 14023–14027.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu Y, Wang L, Predina J, Han R, Beier UH, Wang LC et al. Inhibition of p300 impairs Foxp3+ T regulatory cell function and promotes antitumor immunity. Nat Med 2013; 19: 1173–1177.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. de Zoeten EF, Wang L, Sai H, Dillmann WH, Hancock WW . Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology 2010; 138: 583–594.

    CAS  PubMed  Google Scholar 

  77. Beier UH, Wang L, Bhatti TR, Liu Y, Han R, Ge G et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Mol Cell Biol 2011; 31: 1022–1029.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pickart CM . Ubiquitin enters the new millennium. Mol Cell 2001; 8: 499–504.

    CAS  PubMed  Google Scholar 

  79. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S . The protein kinase complement of the human genome. Science 2002; 298: 1912–1934.

    CAS  PubMed  Google Scholar 

  80. Nakahira K, Morita A, Kim NS, Yanagihara I . Phosphorylation of FOXP3 by LCK downregulates MMP9 expression and represses cell invasion. PLoS One 2013; 8: e77099.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 2011; 117: 1061–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 2011; 117: 3921–3928.

    CAS  PubMed  Google Scholar 

  83. Wang X, Lu L, Jiang S . Regulatory T cells: customizing for the clinic. Sci Transl Med 2011; 3: 83ps19.

    PubMed  Google Scholar 

  84. Maury S, Lemoine FM, Hicheri Y, Rosenzwajg M, Badoual C, Cherai M et al. CD4+CD25+ regulatory T cell depletion improves the graft-versus-tumor effect of donor lymphocytes after allogeneic hematopoietic stem cell transplantation. Sci Transl Med 2010; 2: 41ra52.

    PubMed  Google Scholar 

  85. Al-Homsi AS, Roy TS, Cole K, Feng Y, Duffner U . Post-transplant high-dose cyclophosphamide for the prevention of graft-versus-host disease: a review. Biol Blood Marrow Transplant 2014; in press.

  86. Luznik L, O’Donnell PV, Fuchs EJ . Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Semin Oncol 2012; 39: 683–693.

    CAS  PubMed  Google Scholar 

  87. Peccatori J, Forcina A, Clerici D, Crocchiolo R, Vago L, Stanghellini MT et al. Sirolimus-based graft-versus-host disease prophylaxis promotes the in vivo expansion of regulatory T cells and permits peripheral blood stem cell transplantation from haploidentical donors. Leukemia 2014; in press.

  88. Kanakry CG, Ganguly S, Zahurak M, Bolanos-Meade J, Thoburn C, Perkins B et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med 2013; 5: 211ra157.

    PubMed  PubMed Central  Google Scholar 

  89. Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo MG . Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients J Immunol 2006; 177: 8338–8347.

    CAS  PubMed  Google Scholar 

  90. Wang J, Huizinga TW, Toes RE . De novo generation and enhanced suppression of human CD4+CD25+ regulatory T cells by retinoic acid. J Immunol 2009; 183: 4119–4126.

    CAS  PubMed  Google Scholar 

  91. Zhou X, Kong N, Wang J, Fan H, Zou H, Horwitz D et al. Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J Immunol 2010; 185: 2675–2679.

    CAS  PubMed  Google Scholar 

  92. Lu L, Lan Q, Li Z, Zhou X, Gu J, Li Q et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc Natl Acad Sci USA 2014; 111: E3432–E3440.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by National Basic Research Program of China (973 Program) 2014CB541803, 2014CB541903, NSFC 81330072, 31370863, 31170825, 81271835, 31200646, 81302532, 31350110505 and SMCST 11ZR1404900. We gratefully acknowledge the Chinese Academy of Sciences Fellowships for Young International Scientists (2013Y1SB0005) and the Knowledge Innovation Program of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (2012KIP204).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, D., Tsun, A. et al. FOXP3+ regulatory T cells and their functional regulation. Cell Mol Immunol 12, 558–565 (2015). https://doi.org/10.1038/cmi.2015.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.10

Keywords

This article is cited by

Search

Quick links