Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evaluation of the specificity and sensitivity of ferritin as an MRI reporter gene in the mouse brain using lentiviral and adeno-associated viral vectors

Abstract

The development of in vivo imaging protocols to reliably track transplanted cells or to report on gene expression is critical for treatment monitoring in (pre)clinical cell and gene therapy protocols. Therefore, we evaluated the potential of lentiviral vectors (LVs) and adeno-associated viral vectors (AAVs) to express the magnetic resonance imaging (MRI) reporter gene ferritin in the rodent brain. First, we compared the induction of background MRI contrast for both vector systems in immune-deficient and immune-competent mice. LV injection resulted in hypointense (that is, dark) changes of T2/T2* (spin–spin relaxation time)-weighted MRI contrast at the injection site, which can be partially explained by an inflammatory response against the vector injection. In contrast to LVs, AAV injection resulted in reduced background contrast. Moreover, AAV-mediated ferritin overexpression resulted in significantly enhanced contrast to background on T2*-weighted MRI. Although sensitivity associated with the ferritin reporter remains modest, AAVs seem to be the most promising vector system for in vivo MRI reporter gene imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AAV:

adeno-associated viral vector

BLI:

bioluminescence imaging

CNS:

central nervous system

eGFP:

enhanced green fluorescent protein

FerrH:

ferritin heavy subunit

fLuc:

firefly luciferase

LV:

lentiviral vector

MRI:

magnetic resonance imaging

PBS:

phosphate-buffered saline

T2(*):

spin–spin relaxation time

3D:

three-dimensional

VOI:

volume of interest

References

  1. Massoud TF, Gambhir SS . Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm. Trends Mol Med 2007; 13: 183–191.

    Article  CAS  Google Scholar 

  2. Deroose CM, Reumers V, Debyser Z, Baekelandt V . Seeing genes at work in the living brain with non-invasive molecular imaging. Curr Gene Ther 2009; 9: 212–238.

    Article  CAS  Google Scholar 

  3. Vande Velde G, Baekelandt V, Dresselaers T, Himmelreich U . Magnetic resonance imaging and spectroscopy methods for molecular imaging. Q J Nucl Med Mol Imaging 2009; 53: 565–585.

    CAS  PubMed  Google Scholar 

  4. Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 2006; 56: 1001–1010.

    Article  Google Scholar 

  5. Shapiro EM, Sharer K, Skrtic S, Koretsky AP . In vivo detection of single cells by MRI. Magn Reson Med 2006; 55: 242–249.

    Article  Google Scholar 

  6. Himmelreich U, Dresselaers T . Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods 2009; 48: 112–124.

    Article  CAS  Google Scholar 

  7. Bulte JWM, Kraitchman DL . Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004; 17: 484–499.

    Article  CAS  Google Scholar 

  8. Waerzeggers Y, Monfared P, Viel T, Winkeler A, Voges J, Jacobs AH . Methods to monitor gene therapy with molecular imaging. Methods 2009; 48: 139–145.

    Article  Google Scholar 

  9. Cohen B, Dafni H, Meir G, Harmelin A, Neeman M . Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 2005; 7: 109–117.

    Article  CAS  Google Scholar 

  10. Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET . A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 2005; 11: 450–454.

    Article  CAS  Google Scholar 

  11. Weissleder R, Simonova M, Bogdanova A, Bredow S, Enochs WS, Bogdanov Jr A . MR imaging and scintigraphy of gene expression through melanin induction. Radiology 1997; 204: 425–429.

    Article  CAS  Google Scholar 

  12. Zurkiya O, Chan AW, Hu X . MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med 2008; 59: 1225–1231.

    Article  CAS  Google Scholar 

  13. Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 2000; 18: 321–325.

    Article  CAS  Google Scholar 

  14. Gilad AA, Winnard Jr PT, van Zijl PC, Bulte JW . Developing MR reporter genes: promises and pitfalls. NMR Biomed 2007; 20: 275–290.

    Article  CAS  Google Scholar 

  15. Cronin MTD, Morris H, Valko M . Metals, toxicity and oxidative stress. Curr Med Chem 2005; 12: 1161–1208.

    Article  Google Scholar 

  16. Liu J, Cheng EC, Long Jr RC, Yang SH, Wang L, Cheng PH et al. Noninvasive monitoring of embryonic stem cells in vivo with MRI transgene reporter. Tissue Eng Part C Methods 2009; 15: 739–747.

    Article  CAS  Google Scholar 

  17. Cohen B, Ziv K, Plaks V, Israely T, Kalchenko V, Harmelin A et al. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 2007; 13: 498–503.

    Article  CAS  Google Scholar 

  18. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  Google Scholar 

  19. Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O'Malley KL et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 1994; 8: 148–154.

    Article  CAS  Google Scholar 

  20. Consiglio A, Gritti A, Dolcetta D, Follenzi A, Bordignon C, Gage FH et al. Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc Natl Acad Sci USA 2004; 101: 14835–14840.

    Article  CAS  Google Scholar 

  21. Geraerts M, Eggermont K, Hernandez-Acosta P, Garcia-Verdugo JM, Baekelandt V, Debyser Z . Lentiviral vectors mediate efficient and stable gene transfer in adult neural stem cells in vivo. Hum Gene Ther 2006; 17: 635–650.

    Article  CAS  Google Scholar 

  22. Reumers V, Deroose CM, Krylyshkina O, Nuyts J, Geraerts M, Mortelmans L et al. Non-invasive and quantitative monitoring of adult neuronal stem cell migration in mouse brain using bioluminescence imaging. Stem Cells 2008; 26: 2382–2390.

    Article  Google Scholar 

  23. Kwon I, Schaffer DV . Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 2008; 25: 489–499.

    Article  CAS  Google Scholar 

  24. Burger C, Nash K, Mandel RJ . Recombinant adeno-associated viral vectors in the nervous system. Hum Gene Ther 2005; 16: 781–791.

    Article  CAS  Google Scholar 

  25. Taymans J-M, Vandenberghe LH, Haute CVD, Thiry I, Deroose CM, Mortelmans L et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 2007; 18: 195–206.

    Article  CAS  Google Scholar 

  26. Gao G, Vandenberghe LH, Wilson JM . New recombinant serotypes of AAV vectors. Curr Gene Ther 2005; 5: 285–297.

    Article  CAS  Google Scholar 

  27. Ibrahimi A, Vande Velde G, Reumers V, Toelen J, Thiry I, Vandeputte C et al. Highly efficient multicistronic lentiviral vectors with peptide 2A sequences. Hum Gene Ther 2009; 20: 845–860.

    Article  CAS  Google Scholar 

  28. Kaneko Y, Kitamoto T, Tateishi J, Yamaguchi K . Ferritin immunohistochemistry as a marker for microglia. Acta Neuropathol 1989; 79: 129–136.

    Article  CAS  Google Scholar 

  29. Baekelandt V, Eggermont K, Michiels M, Nuttin B, Debyser Z . Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Therapy 2003; 10: 1933–1940.

    Article  CAS  Google Scholar 

  30. Geraerts M, Michiels M, Baekelandt V, Debyser Z, Gijsbers R . Upscaling of lentiviral vector production by tangential flow filtration. J Gene Med 2005; 7: 1299–1310.

    Article  CAS  Google Scholar 

  31. Weber R, Wegener S, Ramos-Cabrer P, Wiedermann D, Hoehn M . MRI detection of macrophage activity after experimental stroke in rats: new indicators for late appearance of vascular degradation? Magn Reson Med 2005; 54: 59–66.

    Article  Google Scholar 

  32. Zhang X, Surguladze N, Slagle-Webb B, Cozzi A, Connor JR . Cellular iron status influences the functional relationship between microglia and oligodendrocytes. Glia 2006; 54: 795–804.

    Article  CAS  Google Scholar 

  33. Connor JR, Menzies SL . Altered cellular distribution of iron in the central nervous system of myelin deficient rats. Neuroscience 1990; 34: 265–271.

    Article  CAS  Google Scholar 

  34. Gelman BB, Rodriguez-Wolf MG, Wen J, Kumar S, Campbell GR, Herzog N . Siderotic cerebral macrophages in the acquired immunodeficiency syndrome. Arch Pathol Lab Med 1992; 116: 509–516.

    CAS  PubMed  Google Scholar 

  35. Peel AL, Klein RL . Adeno-associated virus vectors: activity and applications in the CNS. J Neurosci Methods 2000; 98: 95–104.

    Article  CAS  Google Scholar 

  36. McCown TJ, Xiao X, Li J, Breese GR, Jude Samulski R . Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 1996; 713: 99–107.

    Article  CAS  Google Scholar 

  37. Chamberlin NL, Du B, de Lacalle S, Saper CB . Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res 1998; 793: 169–175.

    Article  CAS  Google Scholar 

  38. Reimsnider S, Manfredsson FP, Muzyczka N, Mandel RJ . Time course of transgene expression after intrastriatal pseudotyped rAAV2/1, rAAV2/2, rAAV2/5, and rAAV2/8 transduction in the rat. Mol Ther 2007; 15: 1504–1511.

    Article  CAS  Google Scholar 

  39. Brooks RA, Vymazal J, Goldfarb RB, Bulte JWM, Aisen P . Relaxometry and magnetometry of ferritin. Magn Reson Med 1998; 40: 227–235.

    Article  CAS  Google Scholar 

  40. Bulte JWM, Douglas T, Mann S, Frankel RB, Moskowitz BM, Brooks RA et al. Magnetoferritin: biomineralization as a novel molecular approach in the design of iron-oxide-based magnetic resonance contrast agents. Invest Radiol 1994; 29: S214–S216.

    Article  CAS  Google Scholar 

  41. Bulte JWM, Douglas T, Mann S, Frankel RB, Moskowitz BM, Brooks RA et al. Magnetoferritin: characterization of a novel superparamagnetic MR contrast agent. J Magn Reson Imaging 1994; 4: 497–505.

    Article  CAS  Google Scholar 

  42. Bulte JWM, Douglas T, Mann S, Vymazal J, Laughlin PG, Frank JA . Initial assessment of magnetoferritin biokinetics and proton relaxation enhancement in rats. Acad Radiol 1995; 2: 871–878.

    Article  CAS  Google Scholar 

  43. Mills PH, Ahrens ET . Enhanced positive-contrast visualization of paramagnetic contrast agents using phase images. Magn Reson Med 2009; 62: 1349–1355.

    Article  Google Scholar 

  44. Deroose CM, Reumers V, Gijsbers R, Bormans G, Debyser Z, Mortelmans L et al. Noninvasive monitoring of long-term lentiviral vector-mediated gene expression in rodent brain with bioluminescence imaging. Mol Ther 2006; 14: 423–431.

    Article  CAS  Google Scholar 

  45. Rangarajan JR, Vande Velde G, Himmelreich U, Dresselaers T, Casteels C, Atre A et al. An image analysis pipeline for quantitative analysis of multi-temporal and multi-modal in vivo small animal images. TOPIM 2009—Dual and Innovative Imaging Modalities 2009; Les Houches; France.

    Google Scholar 

  46. Likar B, Viergever MA, Pernus F . Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Trans Med Imaging 2001; 20: 1398–1410.

    Article  CAS  Google Scholar 

  47. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P . Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 1997; 16: 187–198.

    Article  CAS  Google Scholar 

  48. MacKenzie-Graham A, Lee EF, Dinov ID, Bota M, Shattuck DW, Ruffins S et al. A multimodal, multidimensional atlas of the C57BL/6J mouse brain. J Anat 2004; 204: 93–102.

    Article  Google Scholar 

  49. Cozzi A, Corsi B, Levi S, Santambrogio P, Albertini A, Arosio P . Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity. J Biol Chem 2000; 275: 25122–25129.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the KU Leuven Cell Imaging Core and vector core and thank Frea Coun, Martine Michiels, Sylvie De Swaef, Marly Balcer and Ann Van Santvoort for their excellent technical assistance. We also thank Gaëlle Jestin (Guerbet Biological Research Department, Aulnay-sous-Bois, France) for performing ICP-MS analyses. We are grateful to Paolo Arosio (Department of Biomedical Science and Technology, San Raffaele Hospital, Milano, Italy) for kindly providing us with the rH02 antibody. This work was supported by the EC-FP6 program ‘DiMI’ (LSHB-CT-2005-512146), the EC-FP6 project ‘StrokeMAP’ (LSHC-CT-2006-037186), the KU Leuven Center of Excellence ‘MoSAIC’ (EF/05/08) and the Flemish government IWT SBO/060838 ‘Brainstim’, IWT SBO ‘iMAGiNe’ (IWT 80017), IWT SBO 60819 (Quantiviam) and the EC-FP7 network ‘European Network for Cell Imaging and Tracking Expertise’ (ENCITE, 2007-201842). GVV was funded by the Interuniversity Attraction Pole programme NiMI (P6/38) and by the European FP6 project StrokeMAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Baekelandt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vande Velde, G., Rangarajan, J., Toelen, J. et al. Evaluation of the specificity and sensitivity of ferritin as an MRI reporter gene in the mouse brain using lentiviral and adeno-associated viral vectors. Gene Ther 18, 594–605 (2011). https://doi.org/10.1038/gt.2011.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.2

Keywords

This article is cited by

Search

Quick links