Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells

Abstract

We previously reported a method to generate dendritic cell (DC)-like antigen-presenting cells (APC) from human induced pluripotent stem (iPS) cells. However, the method is relatively complicated and laborious. In the current study, we attempted to establish a method through which we could obtain a large number of functional APC with a simple procedure. We transduced iPS cell-derived CD11b+ myeloid cells with genes associated with proliferative or anti-senescence effects, enabling the cells to propagate for more than 4 months in a macrophage colony-stimulating factor (M-CSF)-dependent manner while retaining their capacity to differentiate into functional APC. We named these iPS cell-derived proliferating myeloid cells ‘iPS-ML’, and the iPS-ML-derived APC ‘ML-DC’. In addition, we generated TAP2-deficient iPS cell clones by zinc finger nuclease-aided targeted gene disruption. TAP2-deficient iPS cells and iPS-ML avoided recognition by pre-activated allo-reactive CD8+ T cells. TAP2-deficient ML-DC expressing exogenously introduced HLA-A2 genes stimulated HLA-A2-restricted MART-1-specific CD8+ T cells obtained from HLA-A2-positive allogeneic donors, resulting in generation of MART-1-specific cytotoxic T lymphocyte (CTL) lines. TAP-deficient iPS-ML introduced with various HLA class I genes may serve as an unlimited source of APC for vaccination therapy. If administered into allogeneic patients, ML-DC with appropriate genetic modifications may survive long enough to stimulate antigen-specific CTL and, after that, be completely eliminated. Based on the present study, we propose an APC-producing system that is simple, safe and applicable to all patients irrespective of their HLA types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

APC:

antigen-presenting cells

DC:

dendritic cells

ES cell:

embryonic stem cell

iPS cell:

induced pluripotent stem cell

iPS-MC:

iPS cell-derived myeloid cells

iPS-ML:

iPS cell-derived myeloid cell line

ML-DC:

iPS-ML-derived dendritic cell-like APC.

References

  1. Eksioglu EA, Eisen S, Reddy V . Dendritic cells as therapeutic agents against cancer. Front Biosci 2010; 15: 321–347.

    Article  CAS  Google Scholar 

  2. Robson NC, Hoves S, Maraskovsky E, Schnurr M . Presentation of tumour antigens by dendritic cells and challenges faced. Curr Opin Immunol 2010; 22: 137–144.

    Article  CAS  PubMed  Google Scholar 

  3. Schuler G . Dendritic cells in cancer immunotherapy. Eur J Immunol 2010; 40: 2123–2130.

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  6. Fairchild PJ, Brook FA, Gardner RL, Graca L, Strong V, Tone Y et al. Directed differentiation of dendritic cells from mouse embryonic stem cells. Curr Biol 2000; 10: 1515–1518.

    Article  CAS  PubMed  Google Scholar 

  7. Senju S, Hirata S, Matsuyoshi H, Masuda M, Uemura Y, Araki K et al. Generation and genetic modification of dendritic cells derived from mouse embryonic stem cells. Blood 2003; 101: 3501–3508.

    Article  CAS  PubMed  Google Scholar 

  8. Senju S, Haruta M, Matsunaga Y, Fukushima S, Ikeda T, Takahashi K et al. Characterization of dendritic cells and macrophages generated by directed differentiation from mouse induced pluripotent stem cells. Stem Cells 2009; 27: 1021–1031.

    Article  CAS  PubMed  Google Scholar 

  9. Zhan X, Dravid G, Ye Z, Hammond H, Shamblott M, Gearhart J et al. Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet 2004; 364: 163–171.

    Article  PubMed  Google Scholar 

  10. Slukvin II, Vodyanik MA, Thomson JA, Gumenyuk ME, Choi KD . Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway. J Immunol 2006; 176: 2924–2932.

    Article  CAS  PubMed  Google Scholar 

  11. Su Z, Frye C, Bae KM, Kelley V, Vieweg J . Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clin Cancer Res 2008; 14: 6207–6217.

    Article  CAS  PubMed  Google Scholar 

  12. Senju S, Suemori H, Zembutsu H, Uemura Y, Hirata S, Fukuma D et al. Genetically manipulated human embryonic stem cell-derived dendritic cells with immune regulatory function. Stem Cells 2007; 25: 2720–2729.

    Article  CAS  PubMed  Google Scholar 

  13. Tseng SY, Nishimoto KP, Silk KM, Majumdar AS, Dawes GN, Waldmann H et al. Generation of immunogenic dendritic cells from human embryonic stem cells without serum and feeder cells. Regen Med 2009; 4: 513–526.

    Article  CAS  PubMed  Google Scholar 

  14. Fukushima S, Hirata S, Motomura Y, Fukuma D, Matsunaga Y, Ikuta Y et al. Multiple antigen-targeted immunotherapy with alpha-galactosylceramide-loaded and genetically engineered dendritic cells derived from embryonic stem cells. J Immunother 2009; 32: 219–231.

    Article  CAS  PubMed  Google Scholar 

  15. Matsuyoshi H, Senju S, Hirata S, Yoshitake Y, Uemura Y, Nishimura Y . Enhanced priming of antigen-specific CTLs in vivo by embryonic stem cell-derived dendritic cells expressing chemokine along with antigenic protein: application to antitumor vaccination. J Immunol 2004; 172: 776–786.

    Article  CAS  PubMed  Google Scholar 

  16. Motomura Y, Senju S, Nakatsura T, Matsuyoshi H, Hirata S, Monji M et al. Embryonic stem cell-derived dendritic cells expressing glypican-3, a recently identified oncofetal antigen, induce protective immunity against highly metastatic mouse melanoma, B16-F10. Cancer Res 2006; 66: 2414–2422.

    Article  CAS  PubMed  Google Scholar 

  17. Senju S, Haruta M, Matsumura K, Matsunaga Y, Fukushima S, Ikeda T et al. Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy. Gene Therapy 2011; 18: 874–883.

    Article  CAS  PubMed  Google Scholar 

  18. Choi KD, Vodyanik M, Slukvin II . Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells. Nat Protoc 2011; 6: 296–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakahara S, Tsunoda T, Baba T, Asabe S, Tahara H . Dendritic cells stimulated with a bacterial product, OK-432, efficiently induce cytotoxic T lymphocytes specific to tumor rejection peptide. Cancer Res 2003; 63: 4112–4118.

    CAS  PubMed  Google Scholar 

  20. Tabata H, Kanai T, Yoshizumi H, Nishiyama S, Fujimoto S, Matsuda I et al. Characterization of self-glutamic acid decarboxylase 65-reactive CD4+ T-cell clones established from Japanese patients with insulin-dependent diabetes mellitus. Hum Immunol 1998; 59: 549–560.

    Article  CAS  PubMed  Google Scholar 

  21. Neefjes JJ, Momburg F, Hammerling GJ . Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 1993; 261: 769–771.

    Article  CAS  PubMed  Google Scholar 

  22. Zwaka TP, Thomson JA . Homologous recombination in human embryonic stem cells. Nat Biotechnol 2003; 21: 319–321.

    Article  CAS  PubMed  Google Scholar 

  23. Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 1996; 93: 1156–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bacik I, Cox JH, Anderson R, Yewdell JW, Bennink JR . TAP (transporter associated with antigen processing)-independent presentation of endogenously synthesized peptides is enhanced by endoplasmic reticulum insertion sequences located at the amino- but not carboxyl-terminus of the peptide. J Immunol 1994; 152: 381–387.

    CAS  PubMed  Google Scholar 

  25. Fukuma D, Matsuyoshi H, Hirata S, Kurisaki A, Motomura Y, Yoshitake Y et al. Cancer prevention with semi-allogeneic ES cell-derived dendritic cells. Biochem Biophys Res Commun 2005; 335: 5–13.

    Article  CAS  PubMed  Google Scholar 

  26. Wells JW, Cowled CJ, Darling D, Guinn BA, Farzaneh F, Noble A et al. Semi-allogeneic dendritic cells can induce antigen-specific T-cell activation, which is not enhanced by concurrent alloreactivity. Cancer Immunol Immunother 2007; 56: 1861–1873.

    Article  CAS  PubMed  Google Scholar 

  27. Loyer V, Fontaine P, Pion S, Hetu F, Roy DC, Perreault C . The in vivo fate of APCs displaying minor H antigen and/or MHC differences is regulated by CTLs specific for immunodominant class I-associated epitopes. J Immunol 1999; 163: 6462–6467.

    CAS  PubMed  Google Scholar 

  28. Hermans IF, Ritchie DS, Yang J, Roberts JM, Ronchese F . CD8+ T cell-dependent elimination of dendritic cells in vivo limits the induction of antitumor immunity. J Immunol 2000; 164: 3095–3101.

    Article  CAS  PubMed  Google Scholar 

  29. Matsunaga Y, Fukuma D, Hirata S, Fukushima S, Haruta M, Ikeda T et al. Activation of antigen-specific cytotoxic T lymphocytes by beta2-microglobulin or TAP1 gene disruption and the introduction of recipient-matched MHC class I gene in allogeneic embryonic stem cell-derived dendritic cells. J Immunol 2008; 181: 6635–6643.

    Article  CAS  PubMed  Google Scholar 

  30. Lee S, Schmitt CA, Reimann M . The Myc/macrophage tango: oncogene-induced senescence, Myc style. Semin Cancer Biol 2011; 21: 377–384.

    Article  CAS  PubMed  Google Scholar 

  31. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999; 397: 164–168.

    Article  CAS  PubMed  Google Scholar 

  32. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 2007; 21: 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E et al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 2006; 107: 2170–2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weinberg JB, Haney AF, Xu FJ, Ramakrishnan S . Peritoneal fluid and plasma levels of human macrophage colony-stimulating factor in relation to peritoneal fluid macrophage content. Blood 1991; 78: 513–516.

    CAS  PubMed  Google Scholar 

  35. Hovden AO, Karlsen M, Jonsson R, Aarstad HJ, Appel S . Maturation of monocyte derived dendritic cells with OK432 boosts IL-12p70 secretion and conveys strong T-cell responses. BMC Immunol 2011; 12: 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM . Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Kuzushima K, Hayashi N, Kimura H, Tsurumi T . Efficient identification of HLA-A*2402-restricted cytomegalovirus-specific CD8(+) T-cell epitopes by a computer algorithm and an enzyme-linked immunospot assay. Blood 2001; 98: 1872–1881.

    Article  CAS  PubMed  Google Scholar 

  38. Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994; 180: 347–352.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The cDNA clones for MDM2, BMI1, and EZH2 and 293T cells were provided by RIKEN BRC, which is participating in the National Bio-Resources Project of the MEXT, Japan. The pCSII-EF, pCMV-VSV-G-RSV-Rev and pCAG-HIVgp constructs were kindly provided by Dr H Miyoshi (RIKEN BioResource Center). This work was supported in part by Grants-in-Aid Nos 18014023, 19591172 and 19059012 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, Research Grant for Intractable Diseases from Ministry of Health and Welfare, Japan and grants from Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Senju.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haruta, M., Tomita, Y., Yuno, A. et al. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells. Gene Ther 20, 504–513 (2013). https://doi.org/10.1038/gt.2012.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.59

Keywords

This article is cited by

Search

Quick links