Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Inhibition of TGF-β signaling in genetically engineered tumor antigen-reactive T cells significantly enhances tumor treatment efficacy

Abstract

Transforming growth factor β (TGF-β) is a cytokine with complex biological functions that may involve tumor promotion or tumor suppression. It has been reported that multiple types of tumors secrete TGF-β, which can inhibit tumor-specific cellular immunity and may represent a major obstacle to the success of tumor immunotherapy. In this study, we sought to enhance tumor immunotherapy using genetically modified antigen-specific T cells by interfering with TGF-β signaling. We constructed three γ-retroviral vectors, one that expressed TGF-β-dominant-negative receptor II (DNRII) or two that secreted soluble TGF-β receptors: soluble TGF-β receptor II (sRII) and the sRII fused with mouse IgG Fc domain (sRIIFc). We demonstrated that T cells genetically modified with these viral vectors were resistant to exogenous TGF-β-induced smad-2 phosphorylation in vitro. The functionality of antigen-specific T cells engineered to resist TGF-β signaling was further evaluated in vivo using the B16 melanoma tumor model. Antigen-specific CD8+ T cells (pmel-1) or CD4+ T cells (tyrosinase-related protein-1) expressing DNRII dramatically improved tumor treatment efficacy. There was no enhancement in the B16 tumor treatment using cells secreting soluble receptors. Our data support the potential application of the blockade of TGF-β signaling in tumor-specific T cells for cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 2011; 17: 4550–4557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yingling JM, Blanchard KL, Sawyer JS . Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004; 3: 1011–1022.

    Article  CAS  PubMed  Google Scholar 

  4. Penafuerte C, Galipeau J . TGF beta secreted by B16 melanoma antagonizes cancer gene immunotherapy bystander effect. Cancer Immunol Immunother 2008; 57: 1197–1206.

    Article  CAS  PubMed  Google Scholar 

  5. Gorelik L, Flavell RA . Transforming growth factor-beta in T-cell biology. Nat Rev Immunol 2002; 2: 46–53.

    Article  CAS  PubMed  Google Scholar 

  6. Gorelik L, Constant S, Flavell RA . Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 2002; 195: 1499–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park K, Kim SJ, Bang YJ, Park JG, Kim NK, Roberts AB et al. Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-beta. Proc Natl Acad Sci USA 1994; 91: 8772–8776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knaus PI, Lindemann D, DeCoteau JF, Perlman R, Yankelev H, Hille M et al. A dominant inhibitory mutant of the type II transforming growth factor beta receptor in the malignant progression of a cutaneous T-cell lymphoma. Mol Cell Biol 1996; 16: 3480–3489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ebner R, Chen RH, Shum L, Lawler S, Zioncheck TF, Lee A et al. Cloning of a type I TGF-beta receptor and its effect on TGF-beta binding to the type II receptor. Science 1993; 260: 1344–1348.

    Article  CAS  PubMed  Google Scholar 

  10. Attisano L, Carcamo J, Ventura F, Weis FM, Massague J, Wrana JL . Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell 1993; 75: 671–680.

    Article  CAS  PubMed  Google Scholar 

  11. Ikushima H, Miyazono K . TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 2010; 10: 415–424.

    Article  CAS  PubMed  Google Scholar 

  12. Terabe M, Ambrosino E, Takaku S, O'Konek JJ, Venzon D, Lonning S et al. Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-beta monoclonal antibody. Clin Cancer Res 2009; 15: 6560–6569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gorelik L, Flavell RA . Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12: 171–181.

    Article  CAS  PubMed  Google Scholar 

  14. Gorelik L, Flavell RA . Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001; 7: 1118–1122.

    Article  CAS  PubMed  Google Scholar 

  15. Bollard CM, Rossig C, Calonge MJ, Huls MH, Wagner HJ, Massague J et al. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 2002; 99: 3179–3187.

    Article  CAS  PubMed  Google Scholar 

  16. Foster AE, Dotti G, Lu A, Khalil M, Brenner MK, Heslop HE et al. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J Immunother 2008; 31: 500–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Russo LM, Brown D, Lin HY . The soluble transforming growth factor-beta receptor: advantages and applications. Int J Biochem Cell Biol 2009; 41: 472–476.

    Article  CAS  PubMed  Google Scholar 

  18. Seth P, Wang ZG, Pister A, Zafar MB, Kim S, Guise T et al. Development of oncolytic adenovirus armed with a fusion of soluble transforming growth factor-beta receptor II and human immunoglobulin Fc for breast cancer therapy. Hum Gene Ther 2006; 17: 1152–1160.

    Article  CAS  PubMed  Google Scholar 

  19. Hu Z, Zhang Z, Guise T, Seth P . Systemic delivery of an oncolytic adenovirus expressing soluble transforming growth factor-beta receptor II-Fc fusion protein can inhibit breast cancer bone metastasis in a mouse model. Hum Gene Ther 2010; 21: 1623–1629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu Z, Gerseny H, Zhang Z, Chen YJ, Berg A, Stock S et al. Oncolytic adenovirus expressing soluble TGFbeta receptor II-Fc-mediated inhibition of established bone metastases: a safe and effective systemic therapeutic approach for breast cancer. Mol Ther 2011; 19: 1609–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 2003; 198: 569–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kerkar SP, Sanchez-Perez L, Yang S, Borman ZA, Muranski P, Ji Y et al. Genetic engineering of murine CD8+ and CD4+ T cells for preclinical adoptive immunotherapy studies. J Immunother 2011; 34: 343–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie Y, Akpinarli A, Maris C, Hipkiss EL, Lane M, Kwon EK et al. Naive tumor-specific CD4(+) T cells differentiated in vivo eradicate established melanoma. J Exp Med 2010; 207: 651–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 2008; 112: 362–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huter EN, Stummvoll GH, DiPaolo RJ, Glass DD, Shevach EM . Cutting edge: antigen-specific TGF beta-induced regulatory T cells suppress Th17-mediated autoimmune disease. J Immunol 2008; 181: 8209–8213.

    Article  CAS  PubMed  Google Scholar 

  26. Cejas PJ, Walsh MC, Pearce EL, Han D, Harms GM, Artis D et al. TRAF6 inhibits Th17 differentiation and TGF-beta-mediated suppression of IL-2. Blood 2010; 115: 4750–4757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu L, Wang J, Zhang F, Chai Y, Brand D, Wang X et al. Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. J Immunol 2010; 184: 4295–4306.

    Article  CAS  PubMed  Google Scholar 

  28. Muranski P, Restifo NP . Adoptive immunotherapy of cancer using CD4(+) T cells. Curr Opin Immunol 2009; 21: 200–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J et al. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002; 109: 1551–1559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruffini PA, Rivoltini L, Silvani A, Boiardi A, Parmiani G . Factors, including transforming growth factor beta, released in the glioblastoma residual cavity, impair activity of adherent lymphokine-activated killer cells. Cancer Immunol Immunother 1993; 36: 409–416.

    Article  CAS  PubMed  Google Scholar 

  31. Kobie JJ, Wu RS, Kurt RA, Lou S, Adelman MK, Whitesell LJ et al. Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 2003; 63: 1860–1864.

    CAS  PubMed  Google Scholar 

  32. Rowland-Goldsmith MA, Maruyama H, Matsuda K, Idezawa T, Ralli M, Ralli S et al. Soluble type II transforming growth factor-beta receptor attenuates expression of metastasis-associated genes and suppresses pancreatic cancer cell metastasis. Mol Cancer Ther 2002; 1: 161–167.

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki E, Kapoor V, Cheung HK, Ling LE, DeLong PA, Kaiser LR et al. Soluble type II transforming growth factor-beta receptor inhibits established murine malignant mesothelioma tumor growth by augmenting host antitumor immunity. Clin Cancer Res 2004; 10: 5907–5918.

    Article  CAS  PubMed  Google Scholar 

  34. Bandyopadhyay A, Lopez-Casillas F, Malik SN, Montiel JL, Mendoza V, Yang J et al. Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Res 2002; 62: 4690–4695.

    CAS  PubMed  Google Scholar 

  35. Bandyopadhyay A, Wang L, Lopez-Casillas F, Mendoza V, Yeh IT, Sun L . Systemic administration of a soluble betaglycan suppresses tumor growth, angiogenesis, and matrix metalloproteinase-9 expression in a human xenograft model of prostate cancer. Prostate 2005; 63: 81–90.

    Article  PubMed  Google Scholar 

  36. Ostroukhova M, Seguin-Devaux C, Oriss TB, Dixon-McCarthy B, Yang L, Ameredes BT et al. Tolerance induced by inhaled antigen involves CD4(+) T cells expressing membrane-bound TGF-beta and FOXP3. J Clin Invest 2004; 114: 28–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li H, Han Y, Guo Q, Zhang M, Cao X . Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 2009; 182: 240–249.

    Article  CAS  PubMed  Google Scholar 

  38. Hughes MS, Yu YY, Dudley ME, Zheng Z, Robbins PF, Li Y et al. Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions. Hum Gene Ther 2005; 16: 457–472.

    Article  CAS  PubMed  Google Scholar 

  39. Wargo JA, Robbins PF, Li Y, Zhao Y, El-Gamil M, Caragacianu D et al. Recognition of NY-ESO-1+ tumor cells by engineered lymphocytes is enhanced by improved vector design and epigenetic modulation of tumor antigen expression. Cancer Immunol Immunother 2009; 58: 383–394.

    Article  CAS  PubMed  Google Scholar 

  40. Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res 2010; 70: 6725–6734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Lalage Wakefield for kindly providing TGF-β DNRII vector and help in explaining data. FACS laboratory and the TIL laboratory in the Surgery Branch, National Cancer Institute provide technical support and maintenance of tumor cells from patients. This work is supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, and Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Morgan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Yu, Z., Muranski, P. et al. Inhibition of TGF-β signaling in genetically engineered tumor antigen-reactive T cells significantly enhances tumor treatment efficacy. Gene Ther 20, 575–580 (2013). https://doi.org/10.1038/gt.2012.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.75

Keywords

This article is cited by

Search

Quick links