Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Understanding lentiviral vector chromatin targeting: working to reduce insertional mutagenic potential for gene therapy

Abstract

Replication-deficient retroviruses have been successfully utilized as vectors, offering an efficient, stable method of therapeutic gene delivery. Many examples exist proving this mode of integrative gene transfer is both effective and safe in cultured systems and clinical trials. Along with their success, severe side effects have occurred with early retroviral vectors causing a shift in the approach to vector design before further clinical testing. Several alternative delivery methods are available but lentiviral vectors (LV) are among the most favorable as they are already well understood. LV offer safer integration site selection profiles and a lower degree of genotoxicity, compared with γ-retroviral vectors. Following their introduction, development of the self-inactivating vector configuration was a huge step to this mode of therapy but did not confer full protection against insertional mutagenesis. As a result integration, modeling must be improved to eventually avoid this possibility. The cellular factor LEDGF/p75 seems to play an essential role in the process of LV site selection and its interactions with chromatin are being quickly resolved. LEDGF/p75 is at the center of one example directed integration effort where recombinant products bias the integration event, a step toward fully directed integration into pre-determined benign loci. A more accurate picture of the details of LEDGF/p75 in the natural integration process is emerging, including new binding specificities, chromatin interaction kinetics and additional cellular factors. Together with next-generation sequencing technology and bio-informatics to analyze integration patterns, these advancements will lead to highly focused directed integration, accelerating wide-spread acceptance of LV for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Weinberg JB, Matthews TJ, Cullen BR, Malim MH . Productive human immunodeficiency virus type 1 (HIV-1) infection of non-proliferating human monocytes. J Exp Med 1991; 174: 1477–1482.

    Article  CAS  PubMed  Google Scholar 

  2. Lewis P, Hensel M, Emerman M . Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J 1992; 11: 3053–3058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwedler UV, Kornbluth RS, Trono D . The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. PNAS 1994; 91: 6992–6996.

    Article  Google Scholar 

  4. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  5. De Meyer SF, Vanhoorelbeke K, Chuah MK, Pareyn I, Gillijns V, Hebbel RP et al. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor. Blood 2006; 107: 4728–4736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bainbridge JWB, Tan MH, Ali RR . Gene therapy progress and prospects: the eye. Gene Ther 2006; 13: 1191–1197.

    Article  CAS  PubMed  Google Scholar 

  7. Tschernutter M, Schlichtenbrede FC, Howe S, Balaggan KS, Munro PM, Bainbridge JWB et al. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Ther 2005; 12: 694–701.

    Article  CAS  PubMed  Google Scholar 

  8. Ikeda Y, Yonemitsu Y, Miyazaki M, Kohno R, Murakami Y, Murata T et al. Acute toxicity study of a Simian immunodeficiency virus-based lentiviral vector for retinal gene transfer in nonhuman primates. Hum Gene Ther 2009; 20: 943–954.

    Article  CAS  PubMed  Google Scholar 

  9. Di Pasquale E, Latronico MVG, Jotti GS, Condorelli G . Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte differentiation and function. Gene Ther 2012; 19: 642–648.

    Article  CAS  PubMed  Google Scholar 

  10. Lee CJ, Fan X, Guo XX, Medin JA . Promoter-specific lentivectors for long-term, cardiac-directed therapy of Fabry disease. J Cardiol 2011; 57: 115–122.

    Article  PubMed  Google Scholar 

  11. Marangoni F, Bosticardo M, Charrier S, Draghici E, Locci M, Scaramuzza S et al. Evidence for long-term efficacy and safety of gene therapy for Wiskott–Aldrich syndrome in preclinical models. Mol Ther 2009; 17: 1073–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scaramuzza S, Biasco L, Ripamonti A, Castiello MC, Loperfido M, Draghici E et al. Preclinical safety and efficacy of human CD34+ cells transduced with lentiviral vector for the treatment of Wiskott-Aldrich syndrome. Mol Ther 2012 doi:10.1038/mt.2012.23.

    Article  CAS  PubMed  Google Scholar 

  13. Kobinger GP, Weiner DJ, Yu QC, Wilson JM . Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol 2001; 19: 225–230.

    Article  CAS  PubMed  Google Scholar 

  14. Lundberg C, Bjorklund T, Carlsson T, Jakobsson J, Hantraye P, Deglon N et al. Applications of lentiviral vectors for biology and gene therapy of neurological disorders. Curr Gene Ther 2008; 8: 461–473.

    Article  CAS  PubMed  Google Scholar 

  15. Wong LF, Goodhead L, Prat C, Mitrophanous KA, Kingsman SM, Mazarakis ND . Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther 2006; 17: 1–9.

    Article  CAS  PubMed  Google Scholar 

  16. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326: 818–823.

    Article  CAS  PubMed  Google Scholar 

  17. Seppen J, Rijt R, Looije N, Til N, Lamers W, Elferink R . Long-term correction of bilirubin UDPglucuronyltransferase deficiency in rats by in utero lentiviral gene transfer. Mol Ther 2003; 8: 593–599.

    Article  CAS  PubMed  Google Scholar 

  18. Tarantal A, Lee C, Ekert J, McDonald R, Kohn D, Plopper C et al. Lentiviral vector gene transfer into fetal rhesus monkeys (Macaca mulatta): lung-targeting approaches. Mol Ther 2001; 4: 614–621.

    Article  CAS  PubMed  Google Scholar 

  19. Maguire A, Simonelli F, Pierce E, Pugh E, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer of Leber’s congenital amaurosis. New Engl J Med 2008; 358: 2240–2248.

    Article  CAS  PubMed  Google Scholar 

  20. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly D, Jaski B et al. Calcium upregulation by percutaneous administration of gene therapy in cardic disease (CUPID). Circulation 2011; 124: 304–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levine BL, Humeau LM, Boyer J, MacGregor RR, Rebello T, Lu X et al. Gene transfer in humans using a conditionally replicating lentiviral vector. PNAS 2006; 103: 17372–17377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang GP, Levine BL, Binder GK, Berry CC, Malani N, McGarrity G et al. Analysis of lentiviral vector integration in HIV+ study subjects receiving autologous infusions of gene modified CD4+ T cells. Mol Ther 2009; 17: 844–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Manilla P, Rubello T, Afable C, Lu X, Slepushkin V, Humeau LM et al. Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 2005; 16: 17–25.

    Article  CAS  PubMed  Google Scholar 

  24. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Science 2011; 3: 1–11.

    Google Scholar 

  25. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. New Engl J Med 2009; 360: 447–458.

    Article  CAS  PubMed  Google Scholar 

  26. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneauz C, Hue C, De Villartay JP et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. New Engl J Med 2002; 346: 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  27. Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. New Engl J Med 2010; 363: 355–364.

    Article  CAS  PubMed  Google Scholar 

  28. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118: 3132–3142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009; 119: 964–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH et al. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009; 17: 1919–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Palma M, Montini E, Santoni FR, Benedicenti F, Gentile A, Medico E et al. Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood 2005; 105: 2307–2315.

    Article  CAS  PubMed  Google Scholar 

  32. Schroder ARW, Shinn P, Chen H, Berry C, Ecker JR, Bushman F . HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110: 521–529.

    Article  CAS  PubMed  Google Scholar 

  33. Mitchell RS, Beitzel BF, Schroder ARW, Shinn P, Chen H, Berry CC et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS 2004; 2: 1127–1137; e234.

    Article  CAS  Google Scholar 

  34. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118: 3143–3150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cesana D, Sgualdino J, Rudilosso L, Merella S, Naldini L, Montini E . Whole transcriptome characterization of aberrant splicing events induced by lentiviral vector integrations. J Clin Invest 2012; 122: 1667–1676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Modlich U, Schambach A, Brugman MH, Wicke DC, Knoess S, Li Z et al. Leukemia induction after a single retroviral vector insertion in Evi1 or Prdm16. Leukemia 2008; 22: 1519–1528.

    Article  CAS  PubMed  Google Scholar 

  37. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–696.

    Article  CAS  PubMed  Google Scholar 

  38. Biffi A, Bartolomae CC, Cesana D, Cartier N, Aubourg P, Ranzani M et al. Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 2011; 117: 5332–5339.

    Article  CAS  PubMed  Google Scholar 

  39. Biasco L, Caricordi C, Aiuti. A . Retroviral integrations in gene therapy trials. Mol Ther 2012; 20: 709–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moiani A, Paleari Y, Sartori D, Mezzadra R, Miccio A, Cattoglio C et al. Lentiviral vector integration in the human genome induces alternative splicing and generates aberrant transcripts. J Clin Invest 2012; 122: 1653–1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heckl D, Schwarzer A, Haemmerle R, Steinemann D, Rudolph C, Skawran B et al. Lentiviral vector induced insertional haploinsufficiency of Ebf1 causes murine leukemia. Mol Ther 2012; 20: 1187–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bushman FD, Fujiwara T, Craigie R . Retroviral DNA integration directed by HIV integration protein in vitro. Science 1990; 249: 1555–1558.

    Article  CAS  PubMed  Google Scholar 

  43. Pruss D, Reeves R, Bushman FD, Wolffe AP . The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J Biol Chem 1994; 269: 25031–25041.

    CAS  PubMed  Google Scholar 

  44. Müller HP, Varmus HE . DNA bending creates favored sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes. EMBO J 1994; 13: 4704–4714.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bor YC, Miller MD, Bushman FD, Orgel LE . Target-sequence preferences of HIV-1 integration complexes in vivo. J Virol 1996; 222: 283–288.

    Article  CAS  Google Scholar 

  46. Stevens SW, Griffith JD . Sequence analysis of the human DNA flanking sites of HIV type-1 integration. J Virol 1996; 70: 6459–6462.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Taganov KD, Cuesta I, Daniel R, Cirillo LA, Katz RA, Zaret KS et al. Integrase-specific enhancement and suppression of retroviral DNA integration by compacted chromatin structure in vitro. J Virol 2004; 78: 5848–5855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kustikova O, Geiger H, Li Z, Brugman M, Chambers S, Shaw C et al. Retroviral vector insertion sites associated with dominant hematopoietic clones mark ‘stemness’ pathways. Blood 2007; 109: 1897–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu X, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    Article  CAS  PubMed  Google Scholar 

  50. Narezkina A, Taganov KD, Litwin S, Stoyanova R, Hayashi J, Seeger C et al. Genome-wide analyses of Avian Sarcoma virus integration sites. J Virol 2004; 78: 11656–11663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Berry C, Hannenhalli S, Leipzig J, Bushman FD . Selection of target sites for mobile DNA integration in the human genome. PLoS Comput Biol 2006; 2: e157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Crise B, Li Y, Yuan C, Morcock DR, Whitby D, Munroe DJ et al. Simian immunodeficiency virus integration preference is similar to that of human immunodeficiency virus type 1. J Virol 2005; 79: 12199–12204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kang Y, Moressi CJ, Scheetz TE, Xie L, Tran DT, Casavant TL et al. Integration site choice of a feline immunodeficiency virus vector. J Virol 2006; 80: 8820–8823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Holman AG, Coffin JM . Symmetrical base preferences surrounding HIV-1, avian sarcoma leukosis virus, and murine leukemia virus integration sites. PNAS 2005; 102: 6103–6107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu X, Li Y, Crise B, Burgess SM, Munroe DJ . Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses. J Virol 2005; 79: 5211–5214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jenuwein T, Allis CD . Translating the histone code. Science 2001; 293: 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  57. Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD . HIV integration site selection: Analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 2007; 17: 1186–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Biasco L, Ambrosi A, Pellin D, Bartholomae C, Brigida I, Roncarolo M et al. Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell. EMBO Mol Med 2011; 3: 89–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brady T, Agostob LM, Malania N, Berry CC, O'Dohertyb U, Bushman F . HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS 2009; 23: 1461–1471.

    Article  PubMed  Google Scholar 

  60. Gijsbers R, Ronen K, Vets S, Malani N, Rijck JD, McNeely M et al. LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin. Mol Ther 2010; 18: 552–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Santoni FA, Hartley O, Luban J . Deciphering the code for retroviral integration target site selection. PLoS 2010; 6: e1001008.

    Article  CAS  Google Scholar 

  62. Ambrosi A, Glad IK, Pellin D, Cattoglio C, Mavilio F, Serio CD et al. Estimated comparative integration hotspots identify different behaviors of retroviral gene transfer vectors. PLoS Comput Biol 2011; 7: e1002292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Albanese A, Arosio D, Terreni M, Cereseto A . HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery. PLoS ONE 2008; 3: e2413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Barr SD, Ciuffi A, Leipzig J, Shinn P, Ecker JR, Bushman FD . HIV integration site selection: targeting in macrophages and the effects of different routes of viral entry. Mol Ther 2006; 14: 218–225.

    Article  CAS  PubMed  Google Scholar 

  65. Ciuffi A, Mitchell RS, Hoffmann C, Leipzig J, Shinn P, Ecker JR et al. Integration site selection by HIV-based vectors in dividing and growth-arrested IMR-90 lung fibroblasts. Mol Ther 2006; 13: 366–373.

    Article  CAS  PubMed  Google Scholar 

  66. Bartholomae C, Arens A, Balaggan K, Yanez-Munoz R, Montini E, Howe S et al. Lentiviral vector integration profiles differ in rodent postmitotic tissues. Mol Ther 2011; 19: 703–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Llano M, Vanegas M, Fregoso O, Saenz D, Chung S, Peretz M et al. LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J Virol 2004; 78: 9524–9537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Busschots K, Vercammen J, Emiliani S, Benarous R, Engelborgh Y, Christ F et al. The interaction of LEDGF/p75 with integrase is lentivirus-specific and promotes DNA binding. J Biol Chem 2005; 280: 17841–17847.

    Article  CAS  PubMed  Google Scholar 

  69. Marshall HM, Ronen K, Berry C, Llano M, Sutherland H, Saenz D et al. Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting. PLoS ONE 2007; 2: e1340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Shinohara T, Singh DP, Fatma N . LEDGF a survival factor, activates stress-related genes. Prog Retin Eye Res 2002; 21: 341–358.

    Article  CAS  PubMed  Google Scholar 

  71. Emiliani S, Mousnier A, Busschots K, Maroun M, Van Maele B, Tempe D et al. Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J Biol Chem 2005; 280: 25517–25523.

    Article  CAS  PubMed  Google Scholar 

  72. Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 2005; 11: 1287–1289.

    Article  CAS  PubMed  Google Scholar 

  73. Shun MC, Raghavendra NK, Vandergraaff N, Daigle JE, Hughes S, Kellam P et al. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev 2007; 21: 1767–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Engelman A, Cherepanov P . The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog 2008; 4: e1000046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Turlure F, Maertens G, Rahman S, Cherepanov P, Engelman A . A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo. Nucleic Acids Res 2006; 34: 1663–1675.

    Article  CAS  Google Scholar 

  76. Llano M, Vanegas M, Hutchins N, Thompson D, Delgado S, Poeschla EM . Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75. J Mol Biol 2006; 360: 760–773.

    Article  CAS  PubMed  Google Scholar 

  77. Rijck JD, Bartholomeeusen K, Ceulemans H, Debyser Z, Gijsbers R . High-resolution profiling of the LEDGF/p75 chromatin interaction in the ENCODE region. Nucleic Acids Res 2010; 38: 6135–6147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Singh DP, Fatma N, Kimura A, Chylack LT, Shinohara T . LEDGF binds to heat shock and stress-related element to activate the expression of stress-related genes. Biochem Biophys Res Commun 2001; 283: 943–955.

    Article  CAS  PubMed  Google Scholar 

  79. Tsutsui KM, Sano K, Hosoya O, Miyamoto T, Tsutsui K . Nuclear protein LEDGF/p75 recognizes supercoiled DNA by a novel DNA-binding domain. Nucleic Acids Res 2011; 39: 5067–5081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McNeely M, Hendrix J, Busschots K, Boons E, Deleersnijder A, Gerard M et al. In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. J Mol Biol 2011; 410: 811–830.

    Article  CAS  PubMed  Google Scholar 

  81. Hendrix J, Gijsbers R, Rijck JD, Voet A, Hotta J, McNeely M et al. The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering. Nucleic Acids Res 2011; 39: 1310–1325.

    Article  CAS  PubMed  Google Scholar 

  82. Christ F, Thys W, De Rijck J, Gijsbers R, Albanese A, Arosio D et al. Transportin- SR2 imports HIV into the nucleus. Curr Biol 2008; 18: 1192–1202.

    Article  CAS  PubMed  Google Scholar 

  83. Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E . Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 1995; 270: 14209–14213.

    Article  CAS  PubMed  Google Scholar 

  84. Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T et al. HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog 2011; 7: e1001313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bushman FD . Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. PNAS 1994; 91: 9233–9237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Katz RA, Merkel G, Skalka AM . Targeting retroviral integrase by fusion to a hertologous DNA binding domain: In vitro activities and incorporation of a fusion protein into viral particles. J Virol 1996; 217: 178–190.

    Article  CAS  Google Scholar 

  87. Holmes-Son ML, Chow SA . Correct integration mediated by integrase–LexA fusion proteins incorporated into HIV-1. Mol Ther 2002; 5: 360–370.

    Article  CAS  PubMed  Google Scholar 

  88. Daniel R, Smith JA . Integration site selection by retroviral vectors: molecular mechanism and clinical consequences. Hum Gene Ther 2008; 19: 557–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schenkwein D, Turkki V, Karkkainen HR, Airenne K, Herttuala SY . Production of HIV-1 integrase fusion protein-carrying lentiviral vectors for gene therapy and protein transduction. Hum Gene Ther 2010; 21: 589–602.

    Article  CAS  PubMed  Google Scholar 

  90. Silvers RM, Smith JA, Schowalter M, Litwin S, Liang Z, Geary K et al. Modification of integration site preferences of an HIV-1-based vector by expression of a novel synthetic protein. Hum Gene Ther 2010; 21: 337–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ferris AL, Wu X, Hughes CM, Stewart C, Smith SJ, Milne TA et al. Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. PNAS 2010; 107: 3135–3140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Staunstrup N, Moldt B, Mates L, Villesen P, Jakobsen M, Ivics Z et al. Hybrid lentivirus-transposon vectors with a random integration profile in human cells. Mol Ther 2009; 17: 1205–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Moldt B, Misky C, Staunstrup N, Gogol-Doring A, Bak R, Sharma N et al. Comparative genomic integration profiling of Sleeping Beauty transposons mobilized with high efficiency from integrase-defective lentiviral vectors in primary human cells. Mol Ther 2011; 19: 1499–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vink C, Gaspar H, Gabriel R, Schmidt M, Mclvor R, Thrasher A et al. Sleeping Beauty transposition from nonintegrating lentivirus. Mol Ther 2009; 17: 1197–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lombardo A, Genovese P, Beausejour C, Colleoni S, Lee Y, Kim K et al. Gene editing in human stem cells using zinc finger nucleases and integrase-deficient lentiviral vector delivery. Nat Biotechnol 2007; 25: 1298–1306.

    Article  CAS  PubMed  Google Scholar 

  96. Carteau S, Hoffmann C, Bushman FD . Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target. J Virol 1998; 72: 4005–4014.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bushman FD, Hoffmann C, Ronen K, Malani N, Minkah N, Rose HM et al. Massively parallel pyrosequencing in HIV research. AIDS 2008; 22: 1411–1415.

    Article  PubMed  Google Scholar 

  98. O’Reilly M, Shipp A, Rosenthal E, Jambou R, Shih T, Montgomery M et al. NIH oversight of human gene transfer research involving retroviral, lentiviral, and adeno-associated virus vectors and the role of the NIH recombinant DNA advisory committee. Methods Enzymol 2012; 507: 313–335.

    Article  PubMed  CAS  Google Scholar 

  99. Voelkel C, Luhrmann A, Baum C, Leyen H . Retrovirus mediated hematopoietic gene therapy: a European regulatory perspective with special focus on the situation in Germany. Cell Ther Transplant 2009; 1: 84–92.

    Google Scholar 

Download references

Acknowledgements

This work has been supported by NIH Grants CA125272 and CA135214 to RD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Daniel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papayannakos, C., Daniel, R. Understanding lentiviral vector chromatin targeting: working to reduce insertional mutagenic potential for gene therapy. Gene Ther 20, 581–588 (2013). https://doi.org/10.1038/gt.2012.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.88

Keywords

This article is cited by

Search

Quick links