Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC

Abstract

Adoptive immunotherapy of tumors with T cells specific for the cancer-testis antigen NY-ESO-1 has shown great promise in preclinical models and in early stage clinical trials. Tumor persistence or recurrence after NY-ESO-1-specific therapy occurs, however, and the mechanisms of recurrence remain poorly defined. In a murine xenograft model of NY-ESO-1+ multiple myeloma, we observed tumor recurrence after adoptive transfer of CD8+ T cells genetically redirected to the prototypic NY-ESO-1157-165 peptide presented by HLA-A*02:01. Analysis of the myeloma cells that had escaped from T-cell control revealed intact expression of NY-ESO-1 and B2M, but selective, complete loss of HLA-A*02:01 expression from the cell surface. Loss of heterozygosity (LOH) in the major histocompatibility complex (MHC) involving the HLA-A locus was identified in the tumor cells, and further analysis revealed selective loss of the allele encoding HLA-A*02:01. Although LOH involving the MHC has not been described in myeloma patients with persistent or recurrent disease after immune therapies such as allogeneic hematopoietic cell transplantation (HCT), it has been described in patients with acute myelogenous leukemia who relapsed after allogeneic HCT. These results suggest that MHC loss should be evaluated in patients with myeloma and other cancers who relapse after adoptive NY-ESO-1-specific T-cell therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29: 917–924.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rapoport AP, Stadtmauer EA, Vogl DT, Weiss BM, Binder-Scholl GK, Brewer JE et al. Adoptive transfer of gene-modified T-cells engineered to express high-affinity TCRs for cancer-testis antigens (CTAs) NY-ESO-1 or Lage-1, in MM patients post auto-SCT. ASH Annu Meet Abstr 2012; 120: 472.

    Google Scholar 

  4. Porter DL, Kalos M, Zheng Z, Levine B, June C . Chimeric antigen receptor therapy for B-cell malignancies. J Cancer 2011; 2: 331–332.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5: 177ra38.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Pufnock JS, Schmitt TM et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med 2013; 5: 174ra27.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res 2013; 19: 2048–2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 2011; 118: 6050–6056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI . Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol 1999; 163: 507–513.

    CAS  PubMed  Google Scholar 

  11. Cooper LJ, Kalos M, Lewinsohn DA, Riddell SR, Greenberg PD . Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J Virol 2000; 74: 8207–8212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fujio K, Misaki Y, Setoguchi K, Morita S, Kawahata K, Kato I et al. Functional reconstitution of class II MHC-restricted T cell immunity mediated by retroviral transfer of the alpha beta TCR complex. J Immunol 2000; 165: 528–532.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson LA, Heemskerk B, Powell Jr. DJ, Cohen CJ, Morgan RA, Dudley ME et al. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol 2006; 177: 6548–6559.

    Article  CAS  PubMed  Google Scholar 

  14. Moss PA . Redirecting T cell specificity by TCR gene transfer. Nat Immunol 2001; 2: 900–901.

    Article  CAS  PubMed  Google Scholar 

  15. Schaft N, Willemsen RA, de Vries J, Lankiewicz B, Essers BW, Gratama JW et al. Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J Immunol 2003; 170: 2186–2194.

    Article  CAS  PubMed  Google Scholar 

  16. Wang G, Chopra RK, Royal RE, Yang JC, Rosenberg SA, Hwu P . AT cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody/Fc-gamma chain chimeric receptor gene recognizing a human ovarian cancer antigen. Nat Med 1998; 4: 168–172.

    Article  CAS  PubMed  Google Scholar 

  17. Jena B, Dotti G, Cooper LJ . Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood 2010; 116: 1035–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3: 95ra73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rubinstein MP, Kadima AN, Salem ML, Nguyen CL, Gillanders WE, Nishimura MI et al. Transfer of TCR genes into mature T cells is accompanied by the maintenance of parental T cell avidity. J Immunol 2003; 170: 1209–1217.

    Article  CAS  PubMed  Google Scholar 

  21. Schuberth PC, Jakka G, Jensen SM, Wadle A, Gautschi F, Haley D et al. Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma. Gene Ther 2013; 20: 386–395.

    Article  CAS  PubMed  Google Scholar 

  22. Atanackovic D, Arfsten J, Cao Y, Gnjatic S, Schnieders F, Bartels K et al. Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood 2007; 109: 1103–1112.

    Article  CAS  PubMed  Google Scholar 

  23. Condomines M, Hose D, Raynaud P, Hundemer M, De Vos J, Baudard M et al. Cancer/testis genes in multiple myeloma: expression patterns and prognosis value determined by microarray analysis. J Immunol 2007; 178: 3307–3315.

    Article  CAS  PubMed  Google Scholar 

  24. Dhodapkar MV, Osman K, Teruya-Feldstein J, Filippa D, Hedvat CV, Iversen K et al. Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun 2003; 3: 9.

    PubMed  Google Scholar 

  25. Jungbluth AA, Ely S, DiLiberto M, Niesvizky R, Williamson B, Frosina D et al. The cancer-testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation. Blood 2005; 106: 167–174.

    Article  CAS  PubMed  Google Scholar 

  26. van Duin M, Broyl A, de Knegt Y, Goldschmidt H, Richardson PG, Hop WC et al. Cancer testis antigens in newly diagnosed and relapse multiple myeloma: prognostic markers and potential targets for immunotherapy. Haematologica 2011; 96: 1662–1669.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, Pende D et al. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood 2005; 105: 251–258.

    Article  CAS  PubMed  Google Scholar 

  28. Crucian BE, Moscinski LC, Androlewicz M, Ballester OF, Widen RH, Yu H . Assessment of intracellular TAP-1 and TAP-2 in conjunction with surface MHC class I in plasma cells from patients with multiple myeloma. Br J Haematol 1997; 98: 426–432.

    Article  CAS  PubMed  Google Scholar 

  29. Yi Q, Dabadghao S, Osterborg A, Bergenbrant S, Holm G . Myeloma bone marrow plasma cells: evidence for their capacity as antigen-presenting cells. Blood 1997; 90: 1960–1967.

    CAS  PubMed  Google Scholar 

  30. Levine BL, Rapoport AP, Stadtmauer EA, Vogl DT, Weiss B, Binder-Scholl GK et al. Adoptive transfer of gene-modified T-cells engineered to express high-affinity TCR's for cancer-testis antigens NY-ESO-1 or LAGE-1, in multiple myeloma (MM) patients post-autologous hematopoietic stem cell transplant (ASCT). Cytotherapy 2013; 15: S13.

    Article  Google Scholar 

  31. Robbins PF, Li YF, El-Gamil M, Zhao Y, Wargo JA, Zheng Z et al. Single and dual amino-acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J Immunol 2008; 180: 6116–6131.

    Article  CAS  PubMed  Google Scholar 

  32. McCormack E, Adams KJ, Hassan NJ, Kotian A, Lissin NM, Sami M et al. Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors. Cancer Immunol Immunother 2013; 62: 773–785.

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Lora A, Algarra I, Garrido F . MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 2003; 195: 346–355.

    Article  CAS  PubMed  Google Scholar 

  34. Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MT et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med 2009; 361: 478–488.

    Article  CAS  PubMed  Google Scholar 

  35. Villalobos IB, Takahashi Y, Akatsuka Y, Muramatsu H, Nishio N, Hama A et al. Relapse of leukemia with loss of mismatched HLA resulting from uniparental disomy after haploidentical hematopoietic stem cell transplantation. Blood 2010; 115: 3158–3161.

    Article  CAS  PubMed  Google Scholar 

  36. Bethge WA, Haegele M, Faul C, Lang P, Schumm M, Bornhauser M et al. Haploidentical allogeneic hematopoietic cell transplantation in adults with reduced-intensity conditioning and CD3/CD19 depletion: fast engraftment and low toxicity. Exp Hematol 2006; 34: 1746–1752.

    Article  CAS  PubMed  Google Scholar 

  37. Luznik L, O'Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 2008; 14: 641–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nonami A, Miyamoto T, Kuroiwa M, Kunisaki Y, Kamezaki K, Takenaka K et al. Successful treatment of primary plasma cell leukaemia by allogeneic stem cell transplantation from haploidentical sibling. Jpn J Clin Oncol 2007; 37: 969–972.

    Article  PubMed  Google Scholar 

  39. Zomas A, Stefanoudaki K, Fisfis M, Papadaki T, Mehta J . Graft-versus-myeloma after donor leukocyte infusion: maintenance of marrow remission but extramedullary relapse with plasmacytomas. Bone Marrow Transplant 1998; 21: 1163–1165.

    Article  CAS  PubMed  Google Scholar 

  40. Alyea E, Weller E, Schlossman R, Canning C, Webb I, Doss D et al. T-cell—depleted allogeneic bone marrow transplantation followed by donor lymphocyte infusion in patients with multiple myeloma: induction of graft-versus-myeloma effect. Blood 2001; 98: 934–939.

    Article  CAS  PubMed  Google Scholar 

  41. Bellucci R, Alyea EP, Weller E, Chillemi A, Hochberg E, Wu CJ et al. Immunologic effects of prophylactic donor lymphocyte infusion after allogeneic marrow transplantation for multiple myeloma. Blood 2002; 99: 4610–4617.

    Article  CAS  PubMed  Google Scholar 

  42. El-Cheikh J, Crocchiolo R, Furst S, Ladaique P, Castagna L, Faucher C et al. Lenalidomide plus donor-lymphocytes infusion after allogeneic stem-cell transplantation with reduced-intensity conditioning in patients with high-risk multiple myeloma. Exp Hematol 2012; 40: 521–527.

    Article  CAS  PubMed  Google Scholar 

  43. Lokhorst HM, Schattenberg A, Cornelissen JJ, van Oers MH, Fibbe W, Russell I et al. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol 2000; 18: 3031–3037.

    Article  CAS  PubMed  Google Scholar 

  44. Orsini E, Alyea EP, Chillemi A, Schlossman R, McLaughlin S, Canning C et al. Conversion to full donor chimerism following donor lymphocyte infusion is associated with disease response in patients with multiple myeloma. Biol Blood Marrow Transplant 2000; 6: 375–386.

    Article  CAS  PubMed  Google Scholar 

  45. Riddell SR, Greenberg PD . The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods 1990; 128: 189–201.

    Article  CAS  PubMed  Google Scholar 

  46. Chou J, Voong LN, Mortales CL, Towlerton AM, Pollack SM, Chen X et al. Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer. J Immunother 2012; 35: 131–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brehm MA, Racki WJ, Leif J, Burzenski L, Hosur V, Wetmore A et al. Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2rgamma null mice is enhanced by transgenic expression of membrane-bound human SCF. Blood 2012; 119: 2778–2788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramal LM, Maleno I, Cabrera T, Collado A, Ferron A, Lopez-Nevot MA et al. Molecular strategies to define HLA haplotype loss in microdissected tumor cells. Hum Immunol 2000; 61: 1001–1012.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Melissa Comstock and LaKeisha Perkins of the FHCRC NOD/Scid Core Facility for their assistance with the murine xenograft studies. The authors also thank the patients who have donated their blood and tissues for our work. These studies were supported by the J. Orin Edson Fund for Immunotherapy, a Senior Research Award from the Multiple Myeloma Research Foundation (to EHW), and NIH grants P30 CA015704-34, P30 DK56465 PI: B. Torok-Storb, and 5T32HL007093-39.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E H Warren.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klippel, Z., Chou, J., Towlerton, A. et al. Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC. Gene Ther 21, 337–342 (2014). https://doi.org/10.1038/gt.2013.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.87

Keywords

This article is cited by

Search

Quick links