Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Contribution of bone microenvironment to leukemogenesis and leukemia progression

Abstract

Tumor microenvironment has a major role in cancer progression and resistance to treatment. The bone marrow (BM) is a dynamic network of growth factors, cytokines and stromal cells, providing a permissive environment for leukemogenesis and progression. Both BM stroma and leukemic blasts promote angiogenesis, which is increased in acute lymphoblastic leukemia and acute myeloid leukemia. Growth factors like vascular endothelial growth factor (VEGF), basic fibroblast growth factor and angiopoietins are the main proangiogenic mediators in acute leukemia. Autocrine proleukemic loops have been described for VEGF and angiopoietin in hematopoietic cells. Interactions of stromal cells and extracellular matrix with leukemic blasts can also generate antiapoptotic signals that contribute to neoplastic progression and persistence of treatment-resistant minimal residual disease. High expression of CXC chemokine ligand 4 (CXCR4) by leukemic blasts and activation of the CXCR4–CXCL12 axis is involved in leukemia progression and disruption of normal hematopoiesis. Leukemia-associated bone microenvironment markers could be used as prognostic or predictive indicators of disease progression and/or treatment outcome. Studies related to bone microenvironment would likely provide a better understanding of the treatment resistance associated with leukemia therapy and design of new treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Quesenberry PJ, Aliotta JM . The paradoxical dynamism of marrow stem cells: considerations of stem cells, niches and microvesicles. Stem Cell Rev 2008; 4: 137–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Raaijmakers MHGP, Scadden DT . Evolving concepts on the micro environmental niche for hematopoietic stem cells. Curr Opin Hematol 2008; 15: 301–306.

    PubMed  Google Scholar 

  3. Lataillade JJ, Pierre-Louis O, Hasselbalch HC, Uzan G, Jasmin C, Martyré MC et al. Does primary myelofibrosis involve a defective stem cell niche? From concept to evidence. Blood 2008; 112: 3026–3035.

    CAS  PubMed  Google Scholar 

  4. Folkmann J, Kalluri R . Cancer without disease. Nature 2008; 427: 787.

    Google Scholar 

  5. Nyberg P, Salo T, Kalluri R . Tumor microenvironment and angiogenesis. Front Biosci 2008; 13: 6537–6553.

    CAS  PubMed  Google Scholar 

  6. Ribatti D . Is angiogenesis essential for the progression of hematological malignancies or is it an epiphenomenon? Leukemia 2009; 23: 433–434.

    CAS  PubMed  Google Scholar 

  7. Zhou J, Mauerer K, Farina L, Gribben JG . The role of microenvironment in hematological malignancies and implication for therapy. Front Biosci 2005; 10: 1581–1596.

    CAS  PubMed  Google Scholar 

  8. Hussong JW, Rodgers, Shami PJ . Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2005; 95: 309–313.

    Google Scholar 

  9. Padró T, Ruiz S, Bieker R, Bürger H, Steins M, Kienast J et al. Increased angiogenesis in the marrow of patients with acute myeloid leukemia. Blood 2000; 15: 2637–2644.

    Google Scholar 

  10. De Bont ES, Rosati S, Jacobs S, Kamps WA, Vellenga E . Increased bone marrow vascularization in patients with acute myeloid leukaemia: a possible role for vascular endothelial growth factor. Br J Hematol 2001; 113: 296–304.

    CAS  Google Scholar 

  11. Kini AR, Peterson LA, Tallman MS, Lingen MW . Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial growth factor and inhibition by all-trans retinoic acid. Blood 2001; 97: 3919–3924.

    CAS  PubMed  Google Scholar 

  12. Padró T, Bieker R, Ruiz S, Steins M, Retzlaff S, Bürger H et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia. Leukemia 2002; 16: 1302–1310.

    PubMed  Google Scholar 

  13. Litwin C, Leong KG, Zapf R, Sutherland H, Naiman SC, Karsan A . Role of the microenvironment in promoting angiogenesis in acute leukemia. Am J Hematol 2002; 70: 22–30.

    PubMed  Google Scholar 

  14. Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L et al. Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathway is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA 2001; 98: 10857–10862.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fiedler W, Graeven U, Ergün S, Verago S, Kilic N, Stockschläder M et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997; 89: 1870–1875.

    CAS  PubMed  Google Scholar 

  16. Aguayo A, Estey E, Kantarjian H, Mansouri T, Gidel C, Keating M et al. Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood 1999; 94: 3717–3721.

    CAS  PubMed  Google Scholar 

  17. Loges S, Heil G, Bruweleit M, Schoder V, Butzal M, Fischer U et al. Analysis of concerted expression of angiogenic growth factors in acute myeloid leukemia: expression of angiopoietin-2 represents an independent prognostic factor for overall survival. J Clin Oncol 2005; 23: 1109–1117.

    CAS  PubMed  Google Scholar 

  18. Bieker R, Padro T, Kramer J, Steins M, Kessler T, Retzlaff S et al. Overexpression of basic fibroblast growth factor and autocrine stimulation in acute myeloid leukemia. Cancer Res 2003; 63: 7241–7246.

    CAS  PubMed  Google Scholar 

  19. Neegard HF, Iversen N, Bowitz-Lothe IM, Sandset PM, Steinvisk B, Ostenstad B et al. Increased bone marrow microvascular density in haematological malignancies is associated with differential regulation of angiogenic factors. Leukemia 2009; 23: 162–169.

    Google Scholar 

  20. Bruserud O, Glenjen N, Ryningen A . Effects of angiogenic regulators on in vitro proliferation and cytokine secretion by native human acute myelogenous leukemia blasts. Eur J Haematol 2003; 71: 9–17.

    CAS  PubMed  Google Scholar 

  21. Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J . Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997; 150: 815–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Veiga P, Costa LF, Sallan SE, Nadler LM, Cardoso AA . Leukemia-stimulated bone marrow endothelium promotes leukemia cell survival. Exp Hematol 2006; 34: 610–621.

    CAS  PubMed  Google Scholar 

  23. Travaglino E, Benatti C, Malcovatti L, Della Porta MG, Galli A, Bonetti E et al. Biological and clinical relevance of matrix metalloproteinases 2 and 9 in acute myeloid leukaemias and myelodysplastic syndromes. Eur J Haematol 2008; 80: 216–226.

    PubMed  Google Scholar 

  24. Aref S, Salama O, Shamaa S, El-Refaie M, Mourkos H . Angiogenesis factor pattern differs in acute lymphoblastic leukemia and chronic lymphocytic leukemia. Hematology 2007; 12: 319–324.

    CAS  PubMed  Google Scholar 

  25. Bitan M, Polliack A, Zecchina G, Nagler A, Friedmann Y, Nadav L et al. Heparanase expression in human leukemias is restricted to acute myeloid leukemias. Exp Hematol 2002; 30: 34–41.

    CAS  PubMed  Google Scholar 

  26. Eshel R, Benz-Zaken O, Vainas O, Nadir Y, Minucci S, Polliack A et al. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells. Biochem Biophys Res Commun 2005; 335: 1115–1122.

    CAS  PubMed  Google Scholar 

  27. Watarai M, Miwa H, Shikami M, Sugamura K, Wakabayashi M, Satoh A et al. Expression of endothelial cell-associated molecules in AML cells. Leukemia 2002; 16: 112–119.

    CAS  PubMed  Google Scholar 

  28. Rigolin GM, Mauro E, Ciccone M, Fraulini C, Sofritti O, Castoldi G et al. Neoplastic circulating endothelial-like cells in patients with acute myeloid leukaemia. Eur J Haematol 2007; 78: 365–373.

    PubMed  Google Scholar 

  29. Della Porta MG, Malcovati L, Rigolin GM, Rosti V, Bonetti E, Travaglino E et al. Immunophenotypic, cytogenetic and functional characterization of circulating endothelial cells in myelodysplastic syndromes. Leukemia 2008; 22: 530–537.

    CAS  PubMed  Google Scholar 

  30. Rehman J, Li J, Orschell CM, March KL . Peripheral blood endothelial progenitor cells are derived from monocyte/macrophage and secrete angiogenic growth factors. Circulation 2003; 107: 1164–1169.

    PubMed  Google Scholar 

  31. Riccioni R, Calzolari A, Biffoni M, Senese M, Riti V, Petrucci E et al. Podocalyxin is expressed in normal and leukemic monocytes. Blood Cells Mol Dis 2006; 37: 218–225.

    CAS  PubMed  Google Scholar 

  32. Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JCY, Schimmer AD . Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer 2007; 7: 118–129.

    CAS  PubMed  Google Scholar 

  33. Wimazal F, Krauth MT, Vales A, Bohm A, Agis H, Sonneck K et al. Immunohistochemical detection of vascular endothelial growth factor (VEGF) in the bone marrow in patients with myelodysplastic syndromes: correlation between VEGF expression and the FAB category. Leuk Lymphoma 2007; 47: 451–460.

    Google Scholar 

  34. Korkolopoulou P, Apostolidou E, Pavlopoulos PM, Kavantzas N, Vyniou N, Thymara I et al. Prognostic evaluation of the microvascular network in myelodysplastic syndromes. Leukemia 2001; 15: 1369–1376.

    CAS  PubMed  Google Scholar 

  35. Lundberg LG, Hellstrom-Lindberg E, Kanter-Lewensohn L, Lerner R, Palmblad J . Angiogenesis in relation to clinical stage, apoptosis and prognostic score in myelodysplastic syndromes. Leukemia Res 2006; 30: 247–253.

    Google Scholar 

  36. Campioni D, Punturieri M, Bardi A, Moretti S, Tammiso E, Lanza F et al. In vitro evaluation of bone marrow angiogenesis in myelodysplastic syndromes: a morphological and functional approach. Leukemia Res 2004; 28: 9–17.

    Google Scholar 

  37. Keith T, Araki Y, Ohyagi M, Hasegawa M, Yamamoto K, Kurata M et al. Regulation of angiogenesis in the bone marrow of myelodysplastic syndromes transforming to overt leukaemia. Br J Haematol 2007; 137: 206–215.

    CAS  PubMed  Google Scholar 

  38. Mayani H . Composition and function of the hemopoietic microenvironment in human myeloid leukemia. Leukemia 1995; 10: 1041–1047.

    Google Scholar 

  39. Blau O, Hofmann WK, Baldus CD, Thiel G, Serbent V, Schümann E et al. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol 2007; 35: 221–229.

    CAS  PubMed  Google Scholar 

  40. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    CAS  PubMed  Google Scholar 

  41. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA . Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 2008; 322: 1861–1865.

    CAS  PubMed  Google Scholar 

  42. Oostendorp RA, Dörmer P . VLA-4 mediated interactions between normal human hematopoietic progenitors and stromal cells. Leuk Lymphoma 1997; 24: 423–435.

    CAS  PubMed  Google Scholar 

  43. Bradstock KF, Gottlieb DJ . Interaction of acute leukemia cells with the bone marrow microenvironment: implications for control of minimal residual disease. Leuk Lymphoma 1995; 18: 1–16.

    CAS  PubMed  Google Scholar 

  44. Bendall LJ, Daniel A, Kortlepel K, Gottlieb DJ . Bone marrow adherent layers inhibit apoptosis of acute myeloid leukemia. Exp Hematol 1994; 22: 1252–1260.

    CAS  PubMed  Google Scholar 

  45. Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, Moqueen T, Priebe W et al. Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res 2007; 67: 684–694.

    CAS  PubMed  Google Scholar 

  46. Winter SS, Sweatman JJ, Lawrence MB, Rhoades TH, Hart AL, Larson RS . Enhanced T-lineage acute lymphoblastic leukaemia cell survival on bone marrow stroma requires involvement of LFA-1 and ICAM-1. Br J Haematol 2001; 115: 862–871.

    CAS  PubMed  Google Scholar 

  47. Damiano JS, Cress AE, Hazlehurst LA, Shitl AA, Dalton WS . Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93: 1658–1667.

    CAS  PubMed  Google Scholar 

  48. Campana D, Coustan-Smith E, Manabe A, Kumagai M, Murti KG, Silvennoinen O et al. Human B-cell progenitors and bone marrow microenvironment. Hum Cell 1996; 9: 317–322.

    CAS  PubMed  Google Scholar 

  49. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 2003; 9: 1158–1165.

    CAS  PubMed  Google Scholar 

  50. Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M . Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 2002; 16: 1713–1724.

    CAS  PubMed  Google Scholar 

  51. Ryningen A, Wergeland L, Glenjen N, Gjertsen BT, Bruserud O . In vitro crosstalk between fibroblasts and native human acute myelogenous leukemia (AML) blasts via local cytokine network results in increased proliferation and decreased apoptosis of AML cells as well as increased levels of proangiogenic Interleukin 8. Leuk Res 2005; 29: 185–196.

    CAS  PubMed  Google Scholar 

  52. Wu S, Korte A, Kebelmann-Betzing C, Gessner R, Henze G, Seeger K . Interaction of bone marrow stromal cells with lymphoblasts and effects of prednisolone on cytokine expression. Leuk Res 2005; 29: 63–72.

    PubMed  Google Scholar 

  53. Scupoli MT, Donadelli M, Cioffi F, Rossi M, Perbellini O, Malpeli G et al. Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia trough the CXCL12/CXCR4 axis and the NF-κB and JNK/AP-1 pathways. Hematologica 2008; 93: 524–532.

    CAS  Google Scholar 

  54. Li A, Varney ML, Valasek J, Godfrey M, Dave BJ, Singh RK . Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis 2005; 8: 63–71.

    CAS  PubMed  Google Scholar 

  55. Scupoli MT, Perbellini O, Krampera M, Vinante F, Cioffi F, Pizzolo G . Interleukin 7 requirement for survival of T-cell acute lymphoblastic leukemia and human thymocytes on bone marrow stroma. Hematologica 2007; 92: 264–266.

    Google Scholar 

  56. Juarez J, Baraz R, Gaundar S, Bradstock K, Bendall L . Interaction of interleukin-7 and interleukin-3 with the CXCL12-induced proliferation of B-cell progenitor acute lymphoblastic leukemia. Haematologica 2007; 92: 450–459.

    CAS  PubMed  Google Scholar 

  57. Bellamy WT, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y et al. Vascular endothelial growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001; 97: 1427–1434.

    CAS  PubMed  Google Scholar 

  58. Weimar IS, Voermans C, Bourhis JH, Miranda N, van der Berk PC, Nakamura T et al. Hepatocyte growth factor/scatter factor (HGJF/SF affects proliferation and migration of myeloid leukemic cells. Leukemia 1998; 12: 1195–1203.

    CAS  PubMed  Google Scholar 

  59. Zlotnik A, Yoshie O . Chemokines: a new classification system and their role in immunity. Immunity 2000; 12: 121–127.

    CAS  PubMed  Google Scholar 

  60. Sipkins DA, Wei X, Wu JW, Runnels JM, Côté D, Means TK et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005; 435: 969–973.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Burger JA, Kipps TJ . CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006; 107: 1761–1767.

    CAS  PubMed  Google Scholar 

  62. Harrison JS, Rameshwar P, Chang V, Bandari P . Oxygen saturation in the bone marrow of healthy volunteers. Blood 2002; 99: 394.

    CAS  PubMed  Google Scholar 

  63. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD . Distribution of hematopoietic stem cells in bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 2007; 104: 5431–5436.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mortensen BT, Jensen PO, Helledie N, Iversen PO, Ralfkiaer E, Larsen J et al. Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats. Br J Haematol 1998; 102: 458–464.

    CAS  PubMed  Google Scholar 

  65. Jensen PO, Mortensen BT, Hodgkiss RJ, Iversen PO, Christensen IJ, Helledie N et al. Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats. Cell Prolif 2000; 33: 381–395.

    CAS  PubMed  Google Scholar 

  66. Fiegl M, Samudio I, Clise-Dwyer K, Burks J, Mnjoyan Z, Andreeff M . CXCR4 expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood 2009; 113: 1504–1512.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Maxwell . The HIF pathway in cancer. Semin Cell Dev Biol 2005; 16: 523–530.

    CAS  PubMed  Google Scholar 

  68. Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 2006; 20: 911–928.

    CAS  PubMed  Google Scholar 

  69. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 2008; 13: 483–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pramanik K, Trüpschuch S, Greiner A, Ruthardt M, Henschler R, Müller AM . The aorta-gonad-mesonephros-derived stroma cell line DAS104-4 induces differentiation of leukemic cells. Leuk Res 2008; 32: 781–789.

    CAS  PubMed  Google Scholar 

  71. Kankuri E, Babusikova O, Hlubinova K, Salmenpera P, Boccaccio C, Lubitz W et al. Fibroblast nemosis arrests growth and induces differentiation of human leukemia cells. Int J Cancer 2008; 122: 1243–1252.

    CAS  PubMed  Google Scholar 

  72. Buggins AGS, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS et al. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-κB, c-Myc, and pRb pathways. J Immunol 2001; 167: 6021–6030.

    CAS  PubMed  Google Scholar 

  73. Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25− into CD25+T regulatory cells. Blood 2007; 109: 2871–2877.

    CAS  PubMed  Google Scholar 

  74. Yin T, Linheng L . The stem cell niches in bone. J Clin Invest 2006; 116: 1195–1201.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bruserud O, Ryningen A, Wergeland L, Glenjen NI, Gjertsen BT . Osteoblasts increase proliferation and release of pro-angiogenic interleukin 8 by native human acute myelogenous leukemia blasts. Haematologica 2004; 89: 391–402.

    CAS  PubMed  Google Scholar 

  76. Kim DH, Lee NY, Lee MH, Sohn SK, Do YR, Park JY . Vascular endothelial growth factor (VEGF) gene (VEGFA) polymorphism can predict the prognosis in acute myeloid leukaemia patients. Br J Haematol 2008; 140: 71–79.

    CAS  PubMed  Google Scholar 

  77. Dommange F, Cartron G, Espanel C, Gallay N, Domenech J, Benboubker L et al. CXCL12 polymorphism and malignant cell dissemination/tissue infiltration in acute myeloid leukemia. FASEB J 2006; 20: 1913–1915.

    CAS  PubMed  Google Scholar 

  78. Wouters BJ, Löwenberg B, Delwel R . A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects. Blood 2009; 113: 291–298.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al. Stromal gene signature in large-B-cell lymphomas. N Engl J Med 2008; 359: 2313–2323.

    CAS  PubMed  Google Scholar 

  80. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 2009; 15: 68–74.

    CAS  PubMed  Google Scholar 

  81. Aguayo A, Kantarjian HM, Estey EH, Giles FJ, Verstovsek S, Manshouri T et al. Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 2002; 95: 1923–1930.

    PubMed  Google Scholar 

  82. Kümpers P, Koenecke C, Hecker H, Hellpap J, Horn R, Verhagen W et al. Angiopoietin-2 predicts disease-free survival after allogeneic stem cell transplantation in patients with high-risk myeloid malignancies. Blood 2008; 112: 2139–2148.

    PubMed  Google Scholar 

  83. Meads MB, Hazlehurst LA, Dalton WS . The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 2008; 14: 2519–2526.

    CAS  PubMed  Google Scholar 

  84. Dosen-Dahl G, Munthe F, Nygren MK, Stubberud H, Hystad ME, Rian E . Bone marrow stroma cells regulate TIEG1 expression in acute lymphoblastic leukemia cells: role of TGF beta/BMP-6 and TIEG1 in chemotherapy escape. Int J Cancer 2008; 123: 2759–2766.

    PubMed  Google Scholar 

  85. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D . Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 2007; 117: 1049–1057.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dias S, Choy MK, Rafii S . Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood 2002; 99: 2179–2184.

    CAS  PubMed  Google Scholar 

  87. Zeng Z, Samudio IJ, Munsell M, An J, Huang Z, Estey E et al. Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol Cancer Ther 2006; 5: 3113–3121.

    CAS  PubMed  Google Scholar 

  88. Zeng Z, Shi YX, Samudio IJ, Wang R, Ling X, Frolova et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 2009; 113: 6215–6224.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown VI, Seif AE, Reid GS, Teachey DT, Grupp SA . Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunol Res 2008; 42: 84–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Burger JA, Peled A . CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 2009; 23: 43–52.

    CAS  PubMed  Google Scholar 

  91. Juarez J, Dela Pena A, Baraz R, Hewson J, Khoo M, Cisterne A et al. CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. Leukemia 2007; 21: 1249–1257.

    CAS  PubMed  Google Scholar 

  92. Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, Moqueen T, Priebe W et al. Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res 2007; 67: 684–694.

    CAS  PubMed  Google Scholar 

  93. Papa V, Tazzari PL, Chiarini F, Cappellini A, Ricci F, Billi AM et al. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia 2008; 22: 147–160.

    CAS  PubMed  Google Scholar 

  94. Moshaver B, van der Pol MA, Westra AH, Ossenkoppele GJ, Zweegman S, Schuurhuis GJ . Chemotherapeutic treatment of bone marrow stromal cells strongly affects their protective effect on acute myeloid leukemia cell survival. Leuk Lymphoma 2008; 49: 134–148.

    CAS  PubMed  Google Scholar 

  95. Tavor S, Petit I, Porozov S, Avigdor A, Leider-Trejo L, Shemtov N et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res 2004; 64: 2817–2824.

    CAS  PubMed  Google Scholar 

  96. Schuch G, Machluf M, Bartsch G, Nomi M, Richard H, Atala A et al. In vivo administration of vascular endothelial growth factor (VEGF) and its antagonist, soluble neuropilin-1, predicts a role of VEGF in the progression of acute myeloid leukemia in vivo. Blood 2002; 100: 4622–4628.

    CAS  PubMed  Google Scholar 

  97. Schuch G, Oliveira-Ferrer L, Loges S, Laack E, Bokemeyer C, Hossfeld DK et al. Antiangiogenic treatment with endostatin inhibits progression of AML in vivo. Leukemia 2005; 19: 1312–1317.

    CAS  PubMed  Google Scholar 

  98. Iversen PO, Sorensen DR, Benestad HB . Inhibitors of angiogenesis selectively reduce the malignant cell load in rodent models of human myeloid leukemias. Leukemia 2002; 16: 376–381.

    CAS  PubMed  Google Scholar 

  99. Li WW, Hutnik M, Gehr G . Antiangiogenesis in haematological malignancies. Br J Hematol 2008; 143: 622–631.

    Google Scholar 

Download references

Acknowledgements

This work was primarily supported by National Institutes of Health Grants DK62987, DK55001, AA13913, DK61688 and CA125550; Champalimaud Foundation, Stop and Shop Pediatric Brain Cancer Fund and funds from the Department of Medicine for the Division of Matrix Biology at Beth Israel Deaconess Medical Center. FA was supported by Grant BAE-90058 from the Health Research Fund, Ministry of Health, Spain; and by Health Service from Comunidad Autonoma of Murcia, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kalluri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayala, F., Dewar, R., Kieran, M. et al. Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia 23, 2233–2241 (2009). https://doi.org/10.1038/leu.2009.175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.175

Keywords

This article is cited by

Search

Quick links