Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Interferon-α in acute myeloid leukemia: an old drug revisited

Abstract

Interferon-α (IFN-α), a type I IFN, is a well-known antitumoral agent. The investigation of its clinical properties in acute myeloid leukemia (AML) has been prompted by its pleiotropic antiproliferative and immune effects. So far, integration of IFN-α in the therapeutic arsenal against AML has been modest in view of the divergent results of clinical trials. Recent insights into the key pharmacokinetic determinants of the clinical efficacy of IFN along with advances in its pharmaceutical formulation, have sparked renewed interest in its use. This paper reviews the possible applicability of IFN-α in the treatment of AML and provides a rational basis to re-explore its efficacy in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Altekruse SF, Kosary CL, Krapcho M, Neyman N, Aminou R, Waldron W et al. SEER Cancer Statistics Review, 1975–2007. National Cancer Institute: Bethesda, MD, 2010.

    Google Scholar 

  2. Sekeres MA . Treatment of older adults with acute myeloid leukemia: state of the art and current perspectives. Haematologica 2008; 93: 1769–1772.

    PubMed  Google Scholar 

  3. Van Tendeloo VF, Van de Velde A, Van Driessche A, Cools N, Anguille S, Ladell K et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci USA 2010; 107: 13824–13829.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Holman DM, Kalaaji AN . Cytokines in dermatology. J Drugs Dermatol 2006; 5: 520–524.

    PubMed  Google Scholar 

  5. Horner SM, Gale Jr M . Intracellular innate immune cascades and interferon defenses that control hepatitis C virus. J Interferon Cytokine Res 2009; 29: 489–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferrantini M, Capone I, Belardelli F . Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 2007; 89: 884–893.

    CAS  PubMed  Google Scholar 

  7. Damasio EE, Clavio M, Masoudi B, Isaza A, Spriano M, Rossi E et al. Alpha-interferon as induction and maintenance therapy in hairy cell leukemia: a long-term follow-up analysis. Eur J Haematol 2000; 64: 47–52.

    CAS  PubMed  Google Scholar 

  8. Kujawski LA, Talpaz M . The role of interferon-alpha in the treatment of chronic myeloid leukemia. Cytokine Growth Factor Rev 2007; 18: 459–471.

    CAS  PubMed  Google Scholar 

  9. Kiladjian JJ, Chomienne C, Fenaux P . Interferon-alpha therapy in bcr-abl-negative myeloproliferative neoplasms. Leukemia 2008; 22: 1990–1998.

    CAS  PubMed  Google Scholar 

  10. Hill NO, Loeb E, Pardue AS, Dorn GL, Khan A, Hill JM . Response of acute leukemia to leukocyte interferon. J Clin Hematol Oncol 1979; 9: 137–149.

    Google Scholar 

  11. Derynck R, Content J, DeClercq E, Volckaert G, Tavernier J, Devos R et al. Isolation and structure of a human fibroblast interferon gene. Nature 1980; 285: 542–547.

    CAS  PubMed  Google Scholar 

  12. Maeda S, McCandliss R, Gross M, Sloma A, Familletti PC, Tabor JM et al. Construction and identification of bacterial plasmids containing nucleotide sequence for human leukocyte interferon. Proc Natl Acad Sci USA 1980; 77: 7010–7013.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagata S, Taira H, Hall A, Johnsrud L, Streuli M, Ecsodi J et al. Synthesis in E. coli of a polypeptide with human leukocyte interferon activity. Nature 1980; 284: 316–320.

    CAS  PubMed  Google Scholar 

  14. Benjamin R, Khwaja A, Singh N, McIntosh J, Meager A, Wadhwa M et al. Continuous delivery of human type I interferons (alpha/beta) has significant activity against acute myeloid leukemia cells in vitro and in a xenograft model. Blood 2007; 109: 1244–1247.

    CAS  PubMed  Google Scholar 

  15. Berneman ZN, Anguille S, Van Marck V, Schroyens WA, Van Tendeloo VF . Induction of complete remission of acute myeloid leukaemia by pegylated interferon-alpha-2a in a patient with transformed primary myelofibrosis. Br J Haematol 2010; 149: 152–155.

    PubMed  Google Scholar 

  16. Arnaud P . The interferons: pharmacology, mechanism of action, tolerance and side effects. Rev Med Interne 2002; 23 (Suppl 4): 449s–458s.

    PubMed  Google Scholar 

  17. Osborn BL, Olsen HS, Nardelli B, Murray JH, Zhou JX, Garcia A et al. Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. J Pharmacol Exp Ther 2002; 303: 540–548.

    CAS  PubMed  Google Scholar 

  18. Dummer R, Mangana J . Long-term pegylated interferon-alpha and its potential in the treatment of melanoma. Biologics 2009; 3: 169–182.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Colamonici OR, Domanski P, Platanias LC, Diaz MO . Correlation between interferon (IFN) alpha resistance and deletion of the IFN alpha/beta genes in acute leukemia cell lines suggests selection against the IFN system. Blood 1992; 80: 744–749.

    CAS  PubMed  Google Scholar 

  20. Platanias LC . Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 2005; 5: 375–386.

    CAS  PubMed  Google Scholar 

  21. Mayer IA, Verma A, Grumbach IM, Uddin S, Lekmine F, Ravandi F et al. The p38 MAPK pathway mediates the growth inhibitory effects of interferon-alpha in BCR-ABL-expressing cells. J Biol Chem 2001; 276: 28570–28577.

    CAS  PubMed  Google Scholar 

  22. Degli-Esposti MA, Smyth MJ . Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 2005; 5: 112–124.

    CAS  PubMed  Google Scholar 

  23. Dunn GP, Koebel CM, Schreiber RD . Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006; 6: 836–848.

    CAS  PubMed  Google Scholar 

  24. Liu S, Yu Y, Zhang M, Wang W, Cao X . The involvement of TNF-alpha-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-beta-stimulated human dendritic cells to tumor cells. J Immunol 2001; 166: 5407–5415.

    CAS  PubMed  Google Scholar 

  25. Korthals M, Safaian N, Kronenwett R, Maihofer D, Schott M, Papewalis C et al. Monocyte derived dendritic cells generated by IFN-alpha acquire mature dendritic and natural killer cell properties as shown by gene expression analysis. J Transl Med 2007; 5: 46.

    PubMed  PubMed Central  Google Scholar 

  26. Papewalis C, Jacobs B, Wuttke M, Ullrich E, Baehring T, Fenk R et al. IFN-alpha skews monocytes into CD56+-expressing dendritic cells with potent functional activities in vitro and in vivo. J Immunol 2008; 180: 1462–1470.

    CAS  PubMed  Google Scholar 

  27. Cools N, Ponsaerts P, Van Tendeloo VF, Berneman ZN . Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol 2007; 82: 1365–1374.

    CAS  PubMed  Google Scholar 

  28. Smits EL, Anguille S, Cools N, Berneman ZN, Van Tendeloo VF . Dendritic cell-based cancer gene therapy. Hum Gene Ther 2009; 20: 1106–1118.

    CAS  PubMed  Google Scholar 

  29. Tough DF, Sun S, Zhang X, Sprent J . Stimulation of naive and memory T cells by cytokines. Immunol Rev 1999; 170: 39–47.

    CAS  PubMed  Google Scholar 

  30. Le Bon A, Tough DF . Type I interferon as a stimulus for cross-priming. Cytokine Growth Factor Rev 2008; 19: 33–40.

    CAS  PubMed  Google Scholar 

  31. Burchert A, Wolfl S, Schmidt M, Brendel C, Denecke B, Cai D et al. Interferon-alpha, but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and a specific T-cell response in chronic myeloid leukemia. Blood 2003; 101: 259–264.

    CAS  PubMed  Google Scholar 

  32. Dunne PJ, Belaramani L, Fletcher JM, Fernandez de Mattos S, Lawrenz M, Soares MV et al. Quiescence and functional reprogramming of Epstein-Barr virus (EBV)-specific CD8+ T cells during persistent infection. Blood 2005; 106: 558–565.

    CAS  PubMed  Google Scholar 

  33. Matikainen S, Sareneva T, Ronni T, Lehtonen A, Koskinen PJ, Julkunen I . Interferon-alpha activates multiple STAT proteins and upregulates proliferation-associated IL–2Ralpha, c-myc, and pim-1 genes in human T cells. Blood 1999; 93: 1980–1991.

    CAS  PubMed  Google Scholar 

  34. Watanabe N, Narita M, Yokoyama A, Sekiguchi A, Saito A, Tochiki N et al. Type I IFN-mediated enhancement of anti-leukemic cytotoxicity of gammadelta T cells expanded from peripheral blood cells by stimulation with zoledronate. Cytotherapy 2006; 8: 118–129.

    CAS  PubMed  Google Scholar 

  35. Rey J, Veuillen C, Vey N, Bouabdallah R, Olive D . Natural killer and gammadelta T cells in haematological malignancies: enhancing the immune effectors. Trends Mol Med 2009; 15: 275–284.

    CAS  PubMed  Google Scholar 

  36. Wehner R, Schumacher P, Bornhauser M, Ehninger G, Schakel K, Bachmann M et al. Acute myeloid leukemia cells fail to activate native human dendritic cells: a potential mechanism of immune evasion. Leukemia 2010; 24: 1965–1967.

    CAS  PubMed  Google Scholar 

  37. Langenkamp U, Siegler U, Jorger S, Diermayr S, Gratwohl A, Kalberer CP et al. Human acute myeloid leukemia CD34+CD38- stem cells are susceptible to allorecognition and lysis by single KIR-expressing natural killer cells. Haematologica 2009; 94: 1590–1594.

    PubMed  PubMed Central  Google Scholar 

  38. Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 2002; 99: 3661–3667.

    CAS  PubMed  Google Scholar 

  39. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 2003; 102: 1389–1396.

    CAS  PubMed  Google Scholar 

  40. Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L et al. Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 2005; 105: 3615–3622.

    CAS  PubMed  Google Scholar 

  41. Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the poliovirus receptor (CD155) and nectin-2 (CD112). Blood 2005; 105: 2066–2073.

    CAS  PubMed  Google Scholar 

  42. Pende D, Bottino C, Castriconi R, Cantoni C, Marcenaro S, Rivera P et al. PVR (CD155) and nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol 2005; 42: 463–469.

    CAS  PubMed  Google Scholar 

  43. Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 2007; 109: 323–330.

    CAS  PubMed  Google Scholar 

  44. Rohner A, Langenkamp U, Siegler U, Kalberer CP, Wodnar-Filipowicz A . Differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk Res 2007; 31: 1393–1402.

    CAS  PubMed  Google Scholar 

  45. Verheyden S, Demanet C . NK cell receptors and their ligands in leukemia. Leukemia 2008; 22: 249–257.

    CAS  PubMed  Google Scholar 

  46. Szczepanski MJ, Szajnik M, Welsh A, Foon KA, Whiteside TL, Boyiadzis M . Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors. Cancer Immunol Immunother 2010; 59: 73–79.

    CAS  PubMed  Google Scholar 

  47. Reiter Z . Interferon—a major regulator of natural killer cell-mediated cytotoxicity. J Interferon Res 1993; 13: 247–257.

    CAS  PubMed  Google Scholar 

  48. Kalinski P, Giermasz A, Nakamura Y, Basse P, Storkus WJ, Kirkwood JM et al. Helper role of NK cells during the induction of anticancer responses by dendritic cells. Mol Immunol 2005; 42: 535–539.

    CAS  PubMed  Google Scholar 

  49. Lion E, Smits EL, Berneman ZN, Van Tendeloo VF . Quantification of IFN-gamma produced by human purified NK cells following tumor cell stimulation: comparison of three IFN-gamma assays. J Immunol Methods 2009; 350: 89–96.

    CAS  PubMed  Google Scholar 

  50. Lion E, Smits EL, Berneman ZN, Van Tendeloo VF . Acute myeloid leukemic cell lines loaded with synthetic dsRNA trigger IFN-gamma secretion by human NK cells. Leuk Res 2009; 33: 539–546.

    CAS  PubMed  Google Scholar 

  51. Mailliard RB, Son YI, Redlinger R, Coates PT, Giermasz A, Morel PA et al. Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol 2003; 171: 2366–2373.

    CAS  PubMed  Google Scholar 

  52. Matikainen S, Paananen A, Miettinen M, Kurimoto M, Timonen T, Julkunen I et al. IFN-alpha and IL-18 synergistically enhance IFN-gamma production in human NK cells: differential regulation of Stat4 activation and IFN-gamma gene expression by IFN-alpha and IL-12. Eur J Immunol 2001; 31: 2236–2245.

    CAS  PubMed  Google Scholar 

  53. Strowig T, Brilot F, Munz C . Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J Immunol 2008; 180: 7785–7791.

    CAS  PubMed  Google Scholar 

  54. Marcenaro E, Dondero A, Moretta A . Multi-directional cross-regulation of NK cell function during innate immune responses. Transpl Immunol 2006; 17: 16–19.

    CAS  PubMed  Google Scholar 

  55. Giralt S, O’Brien S, Talpaz M, Van Besien K, Chan KW, Rondon G et al. Interferon-alpha and interleukin-2 as treatment for leukemia relapse after allogeneic bone marrow transplantation. Cytokines Mol Ther 1995; 1: 115–122.

    CAS  PubMed  Google Scholar 

  56. Mehta J, Powles R, Singhal S, Tait D, Swansbury J, Treleaven J . Cytokine-mediated immunotherapy with or without donor leukocytes for poor-risk acute myeloid leukemia relapsing after allogeneic bone marrow transplantation. Bone Marrow Transplant 1995; 16: 133–137.

    CAS  PubMed  Google Scholar 

  57. Shaffer L, Giralt S, Champlin R, Chan KW . Treatment of leukemia relapse after bone marrow transplantation with interferon-alpha and interleukin 2. Bone Marrow Transplant 1995; 15: 317–319.

    CAS  PubMed  Google Scholar 

  58. Mehta J, Powles R, Kulkarni S, Treleaven J, Singhal S . Induction of graft-versus-host disease as immunotherapy of leukemia relapsing after allogeneic transplantation: single-center experience of 32 adult patients. Bone Marrow Transplant 1997; 20: 129–135.

    CAS  PubMed  Google Scholar 

  59. Singhal S, Powles R, Treleaven J, Mehta J . Sensitivity of secondary acute myeloid leukemia relapsing after allogeneic bone marrow transplantation to immunotherapy with interferon-alpha 2b. Bone Marrow Transplant 1997; 19: 1151–1153.

    CAS  PubMed  Google Scholar 

  60. Grigg A, Kannan K, Schwarer AP, Spencer A, Szer J . Chemotherapy and granulocyte colony stimulating factor-mobilized blood cell infusion followed by interferon-alpha for relapsed malignancy after allogeneic bone marrow transplantation. Intern Med J 2001; 31: 15–22.

    CAS  PubMed  Google Scholar 

  61. Arellano ML, Langston A, Winton E, Flowers CR, Waller EK . Treatment of relapsed acute leukemia after allogeneic transplantation: a single center experience. Biol Blood Marrow Transplant 2007; 13: 116–123.

    PubMed  Google Scholar 

  62. Gesundheit B, Shapira MY, Resnick IB, Amar A, Kristt D, Dray L et al. Successful cell-mediated cytokine-activated immunotherapy for relapsed acute myeloid leukemia after hematopoietic stem cell transplantation. Am J Hematol 2009; 84: 188–190.

    PubMed  Google Scholar 

  63. Kolb HJ . Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 2008; 112: 4371–4383.

    CAS  PubMed  Google Scholar 

  64. Lowdell MW, Ray N, Craston R, Corbett T, Deane M, Prentice HG . The in vitro detection of anti-leukaemia-specific cytotoxicity after autologous bone marrow transplantation for acute leukaemia. Bone Marrow Transplant 1997; 19: 891–897.

    CAS  PubMed  Google Scholar 

  65. Lowdell MW, Koh MB . Immunotherapy of AML: future directions. J Clin Pathol 2000; 53: 49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lowdell MW, Craston R, Samuel D, Wood ME, O’Neill E, Saha V et al. Evidence that continued remission in patients treated for acute leukaemia is dependent upon autologous natural killer cells. Br J Haematol 2002; 117: 821–827.

    CAS  PubMed  Google Scholar 

  67. Lowdell MW . Natural killer cells in haematopoietic stem cell transplantation. Transfus Med 2003; 13: 399–404.

    CAS  PubMed  Google Scholar 

  68. Falcoff E, Falcoff R, Fournier F, Chany C . Production en masse, purification partielle et caractérisation d’un interféron destiné a des essais thérapeutiques humains. Ann Inst Pasteur (Paris) 1966; 111: 562–584.

    CAS  Google Scholar 

  69. Ahstrom L, Dohlwitz A, Strander H, Carlstrom G, Cantell K . Letter: interferon in acute leukaemia in children. Lancet 1974; 1: 166–167.

    CAS  PubMed  Google Scholar 

  70. Freedman MH, Estrov Z, Williams BR, Gelfand EW . Clinical and in vitro antiproliferative properties of recombinant DNA-derived human interferon-alpha 2. Am J Pediatr Hematol Oncol 1986; 8: 178–182.

    CAS  PubMed  Google Scholar 

  71. Roth MS, Foon KA . Alpha interferon in the treatment of hematologic malignancies. Am J Med 1986; 81: 871–882.

    CAS  PubMed  Google Scholar 

  72. Murren JR, Buzaid AC . The role of interferons in the treatment of malignant neoplasms. Yale J Biol Med 1989; 62: 271–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Silver RT, Vandris K . Recombinant interferon alpha (rIFN alpha-2b) may retard progression of early primary myelofibrosis. Leukemia 2009; 23: 1366–1369.

    CAS  PubMed  Google Scholar 

  74. Marty M, Bayssas M, Gisselbrecht C, Feuillette-Rhodes A, Canivet M, Boiron M . In: E De Maeyer, G Galasso, H Schellekens (eds). The Biology of the Interferon System. Elsevier: Amsterdam, 1981, pp 431–436.

    Google Scholar 

  75. Klingemann HG, Grigg AP, Wilkie-Boyd K, Barnett MJ, Eaves AC, Reece DE et al. Treatment with recombinant interferon (alpha-2b) early after bone marrow transplantation in patients at high risk for relapse. Blood 1991; 78: 3306–3311.

    CAS  PubMed  Google Scholar 

  76. Hill NO, Pardue A, Khan A, Aleman C, Hilario R, Hill JM . Clinical trials of human leukocyte interferon in malignancy. Tex Rep Biol Med 1981; 41: 634–640.

    PubMed  Google Scholar 

  77. Mirro J, Dow LW, Kalwinsky DK, Dahl GV, Weck P, Whisnant J et al. Phase I-II study of continuous-infusion high-dose human lymphoblastoid interferon and the in vitro sensitivity of leukemic progenitors in nonlymphocytic leukemia. Cancer Treat Rep 1986; 70: 363–367.

    CAS  PubMed  Google Scholar 

  78. Rohatiner AZ . Growth inhibitory effects of interferon on blast cells from patients with acute myelogenous leukaemia. Br J Cancer 1984; 49: 805–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Barril G, Quiroga JA, Sanz P, Rodriguez-Salvanes F, Selgas R, Carreno V . Pegylated interferon-alpha2a kinetics during experimental haemodialysis: impact of permeability and pore size of dialysers. Aliment Pharmacol Ther 2004; 20: 37–44.

    CAS  PubMed  Google Scholar 

  80. Gallagher RE, Lurie KJ, Leavitt RD, Wiernik PH . Effects of interferon and retinoic acid on the growth and differentiation of clonogenic leukemic cells from acute myelogenous leukemia patients treated with recombinant leukocyte-alpha A interferon. Leuk Res 1987; 11: 609–619.

    CAS  PubMed  Google Scholar 

  81. Guilhot F, Roy L, Saulnier PJ, Guilhot J . Interferon in chronic myeloid leukaemia: past and future. Best Pract Res Clin Haematol 2009; 22: 315–329.

    CAS  PubMed  Google Scholar 

  82. Ianotto JC, Kiladjian JJ, Demory JL, Roy L, Boyer F, Rey J et al. PEG-IFN-alpha-2a therapy in patients with myelofibrosis: a study of the French Groupe d’Etudes des Myelofibroses (GEM) and France Intergroupe des syndromes Myeloproliferatifs (FIM). Br J Haematol 2009; 146: 223–225.

    CAS  PubMed  Google Scholar 

  83. Jabbour E, Kantarjian H, Cortes J, Thomas D, Garcia-Manero G, Ferrajoli A et al. PEG-IFN-alpha-2b therapy in BCR-ABL-negative myeloproliferative disorders: final result of a phase 2 study. Cancer 2007; 110: 2012–2018.

    CAS  PubMed  Google Scholar 

  84. Kiladjian JJ, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood 2008; 112: 3065–3072.

    CAS  PubMed  Google Scholar 

  85. Langer C, Lengfelder E, Thiele J, Kvasnicka HM, Pahl HL, Beneke H et al. Pegylated interferon for the treatment of high risk essential thrombocythemia: results of a phase II study. Haematologica 2005; 90: 1333–1338.

    CAS  PubMed  Google Scholar 

  86. Quintas-Cardama A, Kantarjian H, Manshouri T, Luthra R, Estrov Z, Pierce S et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol 2009; 27: 5418–5424.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hagenbeek A, Martens AC . BCG treatment of residual disease in acute leukemia: studies in a rat model for human acute myelocytic leukemia (BNML). Leuk Res 1983; 7: 547–555.

    CAS  PubMed  Google Scholar 

  88. Palva IP, Almqvist A, Elonen E, Hanninen A, Jouppila J, Jarventie G et al. Value of maintenance therapy with chemotherapy or interferon during remission of acute myeloid leukaemia. Eur J Haematol 1991; 47: 229–233.

    CAS  PubMed  Google Scholar 

  89. Goldstone AH, Burnett AK, Wheatley K, Smith AG, Hutchinson RM, Clark RE . Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML11 trial. Blood 2001; 98: 1302–1311.

    CAS  PubMed  Google Scholar 

  90. Petti MC, Latagliata R, Avvisati G, Spiriti MA, Montefusco E, Spadea A et al. Treatment of high-risk myelodysplastic syndromes with lymphoblastoid alpha interferon. Br J Haematol 1996; 9: 364–367.

    Google Scholar 

  91. Preisler HD, Raza A, Larson RA . Alteration of the proliferative rate of acute myelogenous leukemia cells in vivo in patients. Blood 1992; 80: 2600–2603.

    CAS  PubMed  Google Scholar 

  92. Matthews SJ, McCoy C . Peginterferon alfa-2a: a review of approved and investigational uses. Clin Ther 2004; 26: 991–1025.

    CAS  PubMed  Google Scholar 

  93. Shaw BE, Russell NH . Treatment options for the management of acute leukaemia relapsing following an allogeneic transplant. Bone Marrow Transplant 2008; 41: 495–503.

    CAS  PubMed  Google Scholar 

  94. Platanias LC, Uddin S, Colamonici OR . Tyrosine phosphorylation of the alpha and beta subunits of the type I interferon receptor. Interferon-beta selectively induces tyrosine phosphorylation of an alpha subunit-associated protein. J Biol Chem 1994; 269: 17761–17764.

    CAS  PubMed  Google Scholar 

  95. Ho HH, Ivashkiv LB . Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J Biol Chem 2006; 281: 14111–14118.

    CAS  PubMed  Google Scholar 

  96. Platanias LC, Sweet ME . Interferon alpha induces rapid tyrosine phosphorylation of the vav proto-oncogene product in hematopoietic cells. J Biol Chem 1994; 269: 3143–3146.

    CAS  PubMed  Google Scholar 

  97. Uddin S, Lekmine F, Sharma N, Majchrzak B, Mayer I, Young PR et al. The Rac1/p38 mitogen-activated protein kinase pathway is required for interferon alpha-dependent transcriptional activation but not serine phosphorylation of Stat proteins. J Biol Chem 2000; 275: 27634–27640.

    CAS  PubMed  Google Scholar 

  98. Kim SH, Chun SY, Kim TS . Interferon-alpha enhances artemisinin-induced differentiation of HL-60 leukemia cells via a PKC alpha/ERK pathway. Eur J Pharmacol 2008; 587: 65–72.

    CAS  PubMed  Google Scholar 

  99. Platanias LC, Uddin S, Yetter A, Sun XJ, White MF . The type I interferon receptor mediates tyrosine phosphorylation of insulin receptor substrate 2. J Biol Chem 1996; 271: 278–282.

    CAS  PubMed  Google Scholar 

  100. Uddin S, Fish EN, Sher D, Gardziola C, Colamonici OR, Kellum M et al. The IRS-pathway operates distinctively from the Stat-pathway in hematopoietic cells and transduces common and distinct signals during engagement of the insulin or interferon-alpha receptors. Blood 1997; 90: 2574–2582.

    CAS  PubMed  Google Scholar 

  101. Sissolak G, Hoffbrand AV, Mehta AB, Ganeshaguru K . Effects of interferon-alpha (IFN) on the expression of interleukin 1-beta (IL-1), interleukin 6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF) in acute myeloid leukemia (AML) blasts. Leukemia 1992; 6: 1155–1160.

    CAS  PubMed  Google Scholar 

  102. Aman MJ, Rudolf G, Goldschmitt J, Aulitzky WE, Lam C, Huber C et al. Type-I interferons are potent inhibitors of interleukin-8 production in hematopoietic and bone marrow stromal cells. Blood 1993; 82: 2371–2378.

    CAS  PubMed  Google Scholar 

  103. Hatfield KJ, Olsnes AM, Gjertsen BT, Bruserud O . Antiangiogenic therapy in acute myelogenous leukemia: targeting of vascular endothelial growth factor and interleukin 8 as possible antileukemic strategies. Curr Cancer Drug Targets 2005; 5: 229–248.

    CAS  PubMed  Google Scholar 

  104. Sissolak G, Hoffbrand AV, Mehta AB, Ganeshaguru K . Interferon-alpha inducible 2′-5′ oligoadenylate synthetase transcripts in lymphoid and myeloid leukemias. Leukemia 1993; 7: 712–716.

    CAS  PubMed  Google Scholar 

  105. Bekisz J, Baron S, Balinsky C, Morrow A, Zoon KC . Antiproliferative properties of type I and type II interferon. Pharmaceuticals 2010; 3: 994–1015.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lehner M, Bailo M, Stachel D, Roesler W, Parolini O, Holter W . Caspase-8 dependent apoptosis induction in malignant myeloid cells by TLR stimulation in the presence of IFN-alpha. Leuk Res 2007; 31: 1729–1735.

    CAS  PubMed  Google Scholar 

  107. Kaufmann SH, Steensma DP . On the TRAIL of a new therapy for leukemia. Leukemia 2005; 19: 2195–2202.

    CAS  PubMed  Google Scholar 

  108. Barteneva N, Kantarjian H, Somasundaram B, Estrov Z, Donato N, Talpaz M . Interferon-alpha augments the apoptotic effect of STI571 in Ph+-blastic crisis cell lines by inducing TRAIL and Fas (CD95/Apo1). Blood 2000; 96: 345a.

    Google Scholar 

  109. Yanai Y, Sanou O, Yamamoto K, Yamauchi H, Ikegami H, Kurimoto M . The anti-tumor activities of interferon (IFN)-alpha in chronic myelogenous leukaemia (CML)-derived cell lines depends on the IFN-alpha subtypes. Cancer Lett 2002; 185: 173–179.

    CAS  PubMed  Google Scholar 

  110. Jedema I, Barge RM, Willemze R, Falkenburg JH . High susceptibility of human leukemic cells to Fas-induced apoptosis is restricted to G1 phase of the cell cycle and can be increased by interferon treatment. Leukemia 2003; 17: 576–584.

    CAS  PubMed  Google Scholar 

  111. Xiao S, Li D, Zhu HQ, Song MG, Pan XR, Jia PM et al. RIG-G as a key mediator of the antiproliferative activity of interferon-related pathways through enhancing p21 and p27 proteins. Proc Natl Acad Sci USA 2006; 103: 16448–16453.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Nakashima A, Kumakura S, Mishima S, Ishikura H, Kobayashi S . IFN-alpha enhances TNF-alpha-induced apoptosis through down-regulation of c-Myc protein expression in HL-60 cells. J Exp Clin Cancer Res 2005; 24: 447–456.

    CAS  PubMed  Google Scholar 

  113. Zhang C, Cui G, Chen Y, Fan K . Antitumor effect of interferon-alpha on U937 human acute leukemia cells in vitro and its molecular mechanism. J Huazhong Univ Sci Technolog Med Sci 2007; 27: 513–515.

    PubMed  Google Scholar 

  114. Xu D, Erickson S, Szeps M, Gruber A, Sangfelt O, Einhorn S et al. Interferon alpha down-regulates telomerase reverse transcriptase and telomerase activity in human malignant and nonmalignant hematopoietic cells. Blood 2000; 96: 4313–4318.

    CAS  PubMed  Google Scholar 

  115. Gutierrez P, Delgado MD, Richard C, Moreau-Gachelin F, Leon J . Interferon induces up-regulation of Spi-1/PU.1 in human leukemia K562 cells. Biochem Biophys Res Commun 1997; 240: 862–868.

    CAS  PubMed  Google Scholar 

  116. Brouwer RE, van der HP, Schreuder GM, Mulder A, Datema G, Anholts JD et al. Loss or downregulation of HLA class I expression at the allelic level in acute leukemia is infrequent but functionally relevant, and can be restored by interferon. Hum Immunol 2002; 63: 200–210.

    CAS  PubMed  Google Scholar 

  117. Guyre PM, Morganelli PM, Miller R . Recombinant immune interferon increases immunoglobulin G Fc receptors on cultured human mononuclear phagocytes. J Clin Invest 1983; 72: 393–397.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Dore BT, Momparler RL . Effects of 5-aza-2′-deoxycytidine and interferon-alpha on differentiation and oncogene expression in HL-60 myeloid leukemic cells. Anticancer Drugs 1992; 3: 281–287.

    CAS  PubMed  Google Scholar 

  119. Grant S, Bhalla K, Weinstein B, Pestka S, Mileno MD, Fisher PB . Recombinant human interferon sensitizes resistant myeloid leukemic cells to induction of terminal differentiation. Biochem Biophys Res Commun 1985; 130: 379–388.

    CAS  PubMed  Google Scholar 

  120. Hamburger AW, White CP, Siebenlist RE, Sedmak JJ, Grossberg SE . Cytotoxicity of human beta-interferon for differentiating leukemic HL-60 cells. Cancer Res 1985; 45: 5369–5373.

    CAS  PubMed  Google Scholar 

  121. Tomida M, Yamamoto Y, Hozumi M . Stimulation by interferon of induction of differentiation of human promyelocytic leukemia cells. Biochem Biophys Res Commun 1982; 104: 30–37.

    CAS  PubMed  Google Scholar 

  122. Hemmi H, Breitman TR . Combinations of recombinant human interferons and retinoic acid synergistically induce differentiation of the human promyelocytic leukemia cell line HL-60. Blood 1987; 69: 501–507.

    CAS  PubMed  Google Scholar 

  123. Gianni M, Zanotta S, Terao M, Rambaldi A, Garattini E . Interferons induce normal and aberrant retinoic-acid receptors type alpha in acute promyelocytic leukemia cells: potentiation of the induction of retinoid-dependent differentiation markers. Int J Cancer 1996; 68: 75–83.

    CAS  PubMed  Google Scholar 

  124. Smits EL, Ponsaerts P, Van de Velde AL, Van Driessche A, Cools N, Lenjou M et al. Proinflammatory response of human leukemic cells to dsRNA transfection linked to activation of dendritic cells. Leukemia 2007; 21: 1691–1699.

    CAS  PubMed  Google Scholar 

  125. Greiner J, Bullinger L, Guinn BA, Dohner H, Schmitt M . Leukemia-associated antigens are critical for the proliferation of acute myeloid leukemia cells. Clin Cancer Res 2008; 14: 7161–7166.

    CAS  PubMed  Google Scholar 

  126. Coudert JD, Held W . The role of the NKG2D receptor for tumor immunity. Semin Cancer Biol 2006; 16: 333–343.

    CAS  PubMed  Google Scholar 

  127. Sutherland CL, Chalupny NJ, Schooley K, VandenBos T, Kubin M, Cosman D . UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. J Immunol 2002; 168: 671–679.

    CAS  PubMed  Google Scholar 

  128. Zhang C, Zhang J, Sun R, Feng J, Wei H, Tian Z . Opposing effect of IFNgamma and IFNalpha on expression of NKG2 receptors: negative regulation of IFNgamma on NK cells. Int Immunopharmacol 2005; 5: 1057–1067.

    CAS  PubMed  Google Scholar 

  129. Rohatiner AZ, Balkwill FR, Griffin DB, Malpas JS, Lister TA . A phase I study of human lymphoblastoid interferon administered by continuous intravenous infusion. Cancer Chemother Pharmacol 1982; 9: 97–102.

    CAS  PubMed  Google Scholar 

  130. Rohatiner AZ, Balkwill FR, Malpas JS, Lister TA . Experience with human lymphoblastoid interferon in acute myelogenous leukaemia (AML). Cancer Chemother Pharmacol 1983; 11: 56–58.

    CAS  PubMed  Google Scholar 

  131. Ankerst J, Faldt R, Nilsson PG, Flodgren P, Sjogren HO . Complete remission in a patient with acute myelogenous leukemia treated with leukocyte alpha-interferon and cimetidine. Cancer Immunol Immunother 1984; 17: 69–71.

    CAS  PubMed  Google Scholar 

  132. Robert KH, Hellstrom E, Einhorn S, Gahrton G . Acute myelogenous leukemia of unfavourable prognosis treated with retinoic acid, vitamin D3, alpha-interferon and low doses of cytosine arabinoside. Scand J Haematol Suppl 1986; 44: 61–74.

    CAS  PubMed  Google Scholar 

  133. Weidmann B, Hansmann E, Hoffmann W, Seeber S, Wilmes FJ . Kutanes Rezidiv einer AML-Teilremission unter Alpha2-interferon, Vollremission nach niedrig dosiertem Mitoxantron. TumorDiagnostik & Therapie 1987; 8: 167–169.

    Google Scholar 

  134. Hellstrom E, Robert KH, Gahrton G, Mellstedt H, Lindemalm C, Einhorn S et al. Therapeutic effects of low-dose cytosine arabinoside, alpha-interferon, 1 alpha-hydroxyvitamin D3 and retinoic acid in acute leukemia and myelodysplastic syndromes. Eur J Haematol 1988; 40: 449–459.

    CAS  PubMed  Google Scholar 

  135. Steger GG, Dittrich C, Chott A, Derfler K, Schwarzmeier JD . Long-term remission in a patient with erythroleukemia following interferon-alpha treatment. J Biol Response Mod 1989; 8: 351–354.

    CAS  PubMed  Google Scholar 

  136. Morecki S, Revel-Vilk S, Nabet C, Pick M, Ackerstein A, Nagler A et al. Immunological evaluation of patients with hematological malignancies receiving ambulatory cytokine-mediated immunotherapy with recombinant human interferon-alpha 2a and interleukin-2. Cancer Immunol Immunother 1992; 35: 401–411.

    CAS  PubMed  Google Scholar 

  137. McSweeney EN, Worman CP, Tsakona CP, Jewel AP, Hoffbrand AV, Milligan DW et al. Low-dose recombinant alfa-2a-interferon: a feasible maintenance therapy in acute myeloid leukaemia in the older patient. Acta Haematol 1993; 89: 1–5.

    CAS  PubMed  Google Scholar 

  138. Ratanatharathorn V, Uberti J, Karanes C, Lum LG, Abella E, Dan ME et al. Phase I study of alpha-interferon augmentation of cyclosporine-induced graft versus host disease in recipients of autologous bone marrow transplantation. Bone Marrow Transplant 1994; 13: 625–630.

    CAS  PubMed  Google Scholar 

  139. Lowdell MW, Craston R, Prentice HG . Generation of autologous immunity to acute myeloid leukaemia and maintenance of complete remission following interferon-alpha treatment. Cytokines Cell Mol Ther 1999; 5: 119–121.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by research grants of the Research Foundation Flanders (FWO Vlaanderen; G.0370.08 and G.0082.08), the Foundation against Cancer (Stichting tegen Kanker), the Antwerp University Concerted Research Action (BOF-GOA, Grant no. 802), the Methusalem program of the Flemish Government attributed to Professor Herman Goossens (Antwerp University, Vaccine and Infectious Disease Insitute, VAXINFECTIO) and the Interuniversity Attraction Pole program (IAP #P6/41) of the Belgian Government. SA and ELJMS are funded by FWO Vlaanderen as PhD fellow and postdoctoral researcher, respectively. EL is funded as PhD fellow by the Agency for Innovation by Science and Technology (IWT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E L J M Smits.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anguille, S., Lion, E., Willemen, Y. et al. Interferon-α in acute myeloid leukemia: an old drug revisited. Leukemia 25, 739–748 (2011). https://doi.org/10.1038/leu.2010.324

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.324

Keywords

This article is cited by

Search

Quick links