Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Interleukin-27 inhibits pediatric B-acute lymphoblastic leukemia cell spreading in a preclinical model

Abstract

B-acute lymphoblastic leukemia (B-ALL) represents the most common pediatric hematological tumor that derives from the aberrant proliferation of early B lymphocytes in the bone marrow. Although most of the B-ALL children take advantage from current therapeutic protocols, some patients relapse and need alternative therapies. With this background, we investigated whether interleukin (IL)-27, an immunomodulatory cytokine with antitumor properties, may function as an antitumor agent against pediatric B-ALL cells. Here we show for the first time that pediatric B-ALL cells functional IL-27R and that IL-27 dampens directly tumor growth in vivo and in vitro through mechanisms elucidated in this study. The novelty of these results deals with the first demonstration that (1) B-ALL cells from pediatric patients injected intravenously (i.v.) into NOD/SCID/Il2rg−/− (NSG) mice gave rise to leukemic spreading that was severely hampered by IL-27; (2) IL-27-treated mice, compared with controls, showed significant reduction of putative B-ALL-initiating cells and blasts in the peripheral blood (PB), bone marrow (BM) and spleen; and that (3) IL-27 reduced in vitro B-ALL cell proliferation and angiogenesis, induced apoptosis and downregulated miR-155. Our results strongly encourage the development of future clinical trials to evaluate the toxicity and efficacy of IL-27 in childhood B-ALL patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Trinchieri G, Pflanz S, Kastelein RA . The IL-12 family of heterodimeric cytokines: new players in the regulation of T-cell responses. Immunity 2003; 19: 641–644.

    Article  CAS  Google Scholar 

  2. Artis D, Villarino A, Silverman M, He W, Thornton EM, Mu S et al. The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity. J Immunol 2004; 173: 5626–5634.

    Article  CAS  Google Scholar 

  3. Feng XM, Chen XL, Liu N, Chen Z, Zhou YL, Han ZB et al. Interleukin-27 upregulates major histocompatibility complex class II expression in primary human endothelial cells through induction of major histocompatibility complex class II transactivator. Hum Immunol 2007; 68: 965–972.

    Article  CAS  Google Scholar 

  4. Villarino AV, Larkin III J, Saris CJ, Caton AJ, Lucas S, Wong T et al. Positive and negative regulation of the IL-27 receptor during lymphoid cell activation. J Immunol 2005; 174: 7684–7691.

    Article  CAS  Google Scholar 

  5. Hisada M, Kamiya S, Fujita K, Belladonna ML, Aoki T, Koyanagi Y et al. Potent antitumor activity of interleukin-27. Cancer Res 2004; 64: 1152–1156.

    Article  CAS  Google Scholar 

  6. Larousserie F, Charlot P, Bardel E, Froger J, Kastelein RA, Devergne O . Differential effects of IL-27 on human B-cell subsets. J Immunol 2006; 176: 5890–5897.

    Article  CAS  Google Scholar 

  7. Chen Q, Ghilardi N, Wang H, Baker T, Xie MH, Gurney A et al. Development of Th1-type immune responses requires the type I cytokine receptor TCCR. Nature 2000; 407: 916–920.

    Article  CAS  Google Scholar 

  8. Pflanz S, Hibbert L, Mattson J, Rosales R, Vaisberg E, Bazan JF et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol 2004; 172: 2225–2231.

    Article  CAS  Google Scholar 

  9. Oniki S, Nagai H, Horikawa T, Furukawa J, Belladonna ML, Yoshimoto T et al. Interleukin-23 and interleukin-27 exert quite different antitumor and vaccine effects on poorly immunogenic melanoma. Cancer Res 2006; 66: 6395–6404.

    Article  CAS  Google Scholar 

  10. Shimizu M, Shimamura M, Owaki T, Asakawa M, Fujita K, Kudo M et al. Antiangiogenic and antitumor activities of IL-27. J Immunol 2006; 176: 7317–7324.

    Article  CAS  Google Scholar 

  11. Ho MY, Leu SJ, Sun GH, Tao MH, Tang SJ, Sun KH . IL-27 directly restrains lung tumorigenicity by suppressing cyclooxygenase-2-mediated activities. J Immunol 2009; 183: 6217–6226.

    Article  CAS  Google Scholar 

  12. Yoshimoto T, Morishima N, Mizoguchi I, Shimizu M, Nagai H, Oniki S et al. Antiproliferative activity of IL-27 on melanoma. J Immunol 2008; 180: 6527–6535.

    Article  CAS  Google Scholar 

  13. Cocco C, Giuliani N, Di Carlo E, Ognio E, Storti P, Abeltino M et al. Interleukin-27 acts as multifunctional antitumor agent in multiple myeloma. Clin Cancer Res 2010; 16: 4188–4197.

    Article  CAS  Google Scholar 

  14. Pradhan A, Lambert QT, Reuther GW . Transformation of hematopoietic cells and activation of JAK2-V617F by IL-27R, a component of a heterodimeric type I cytokine receptor. Proc Natl Acad Sci USA 2007; 104: 18502–18507.

    Article  CAS  Google Scholar 

  15. Carroll WL, Bhojwani D, Min DJ, Raetz E, Relling M, Davies S et al. Pediatric acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2003, 102–131.

    Article  Google Scholar 

  16. Gupta PB, Chaffer CL, Weinberg RA . Cancer stem cells: mirage or reality? Nat Med 2009; 15: 1010–1012.

    Article  CAS  Google Scholar 

  17. Cox CV, Diamanti P, Evely RS, Kearns PR, Blair A . Expression of CD133 on leukemia-initiating cells in childhood ALL. Blood 2009; 113: 3287–3296.

    Article  CAS  Google Scholar 

  18. Basso G, Buldini B, De Zen L, Orfao A . New methodologic approaches for immunophenotyping acute leukemias. Haematologica 2001; 86: 675–692.

    CAS  PubMed  Google Scholar 

  19. Ribatti D, Gualandris A, Bastaki M, Vacca A, Iurlaro M, Roncali L et al. New model for the study of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane: the gelatin sponge/chorioallantoic membrane assay. J Vasc Res 1997; 34: 455–463.

    Article  CAS  Google Scholar 

  20. Airoldi I, Gri G, Marshall JD, Corcione A, Facchetti P, Guglielmino R et al. Expression and function of IL-12 and IL-18 receptors on human tonsillar B cells. J Immunol 2000; 165: 6880–6888.

    Article  CAS  Google Scholar 

  21. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.

    Article  CAS  Google Scholar 

  22. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  Google Scholar 

  23. Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A et al. Reprogramming of miRNA networks in cancer and leukemia. Genome Res 2010; 20: 589–599.

    Article  CAS  Google Scholar 

  24. Agliano A, Martin-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G et al. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rgamma null mice generate a faster and more efficient disease compared to other NOD/SCID-related strains. Int J Cancer 2008; 123: 2222–2227.

    Article  CAS  Google Scholar 

  25. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ . Efficient tumour formation by single human melanoma cells. Nature 2008; 456: 593–598.

    Article  CAS  Google Scholar 

  26. Morisot S, Wayne AS, Bohana-Kashtan O, Kaplan IM, Gocke CD, Hildreth R et al. High frequencies of leukemia stem cells in poor-outcome childhood precursor-B acute lymphoblastic leukemias. Leukemia 2010; 24: 1859–1866.

    Article  CAS  Google Scholar 

  27. Crăiţoiu S . The morphopathological aspects of diabetic retinopathy. Oftalmologia 1992; 36: 141–148.

    PubMed  Google Scholar 

  28. Garner A . Histopathology of diabetic retinopathy in man. Eye (Lond) 1993; 7: 250–253.

    Article  Google Scholar 

  29. Pui CH, Evans WE . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–178.

    Article  CAS  Google Scholar 

  30. Dick JE . Acute myeloid leukemia stem cells. Ann NY Acad Sci 2005; 1044: 1–5.

    Article  Google Scholar 

  31. Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 2005; 11: 630–637.

    Article  CAS  Google Scholar 

  32. Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A . Characterization of acute lymphoblastic leukemia progenitor cells. Blood 2004; 104: 2919–2925.

    Article  CAS  Google Scholar 

  33. Tili E, Croce CM, Michaille JJ . miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol 2009; 28: 264–284.

    Article  CAS  Google Scholar 

  34. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. MicroRNA profiling reveals distinct signatures in B-cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101: 11755–11760.

    Article  CAS  Google Scholar 

  35. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al. Accumulation of miR-155 and BIC RNA in human B-cell lymphomas. Proc Natl Acad Sci USA 2005; 102: 3627–3632.

    Article  CAS  Google Scholar 

  36. Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A . High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 2004; 39: 167–169.

    Article  CAS  Google Scholar 

  37. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 2006; 103: 7024–7029.

    Article  CAS  Google Scholar 

  38. Seita J, Asakawa M, Ooehara J, Takayanagi S, Morita Y, Watanabe N et al. Interleukin-27 directly induces differentiation in hematopoietic stem cells. Blood 2008; 111: 1903–1912.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Associazione Italiana Ricerca sul Cancro (AIRC) Milano, Italy (Grant No. 4014 to IA), from Italian Ministry of Health (RF, RC, 5/1000, Progetto Strategico Oncologico 2006 rif070701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Airoldi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canale, S., Cocco, C., Frasson, C. et al. Interleukin-27 inhibits pediatric B-acute lymphoblastic leukemia cell spreading in a preclinical model. Leukemia 25, 1815–1824 (2011). https://doi.org/10.1038/leu.2011.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.158

Keywords

This article is cited by

Search

Quick links