Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells

Abstract

Multiple myeloma is a plasma cell neoplasm residing in bone marrow. Despite advances in myeloma therapies, novel therapies are required to improve patient outcomes. CD47 is highly expressed on myeloma cells and a potential therapeutic candidate for myeloma therapies. Flow cytometric analysis of patient bone marrow cells revealed that myeloma cells overexpress CD47 when compared with non-myeloma cells in 73% of patients (27/37). CD47 expression protects cells from phagocytosis by transmitting an inhibitory signal to macrophages. Here we show that blocking CD47 with an anti-CD47 monoclonal antibody increased phagocytosis of myeloma cells in vitro. In xenotransplantation models, anti-CD47 antibodies inhibited the growth of RPMI 8226 myeloma cells and led to tumor regression (42/57 mice), implicating the eradication of myeloma-initiating cells. Moreover, anti-CD47 antibodies retarded the growth of patient myeloma cells and alleviated bone resorption in human bone-bearing mice. Irradiation of mice before myeloma cell xenotransplantation abolished the therapeutic efficacy of anti-CD47 antibodies delivered 2 weeks after radiation, and coincided with a reduction of myelomonocytic cells in spleen, bone marrow and liver. These results are consistent with the hypothesis that anti-CD47 blocking antibodies inhibit myeloma growth, in part, by increasing phagocytosis of myeloma cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yaccoby S, Barlogie B, Epstein J . Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood 1998; 92: 2908–2913.

    CAS  PubMed  Google Scholar 

  2. Kirshner J, Thulien KJ, Martin LD, Debes Marun C, Reiman T, Belch AR et al. A unique three-dimensional model for evaluating the impact of therapy on multiple myeloma. Blood 2008; 112: 2935–2945.

    Article  CAS  PubMed  Google Scholar 

  3. Kyle RA, Rajkumar SV . Multiple myeloma. N Engl J Med 2004; 351: 1860–1873.

    Article  CAS  PubMed  Google Scholar 

  4. Rajkumar SV . Treatment of relapsed or refractory multiple myeloma. In: Kyle RA, Basow DS (eds) UpToDate. UpToDate: Waltham, MA, 2010.

    Google Scholar 

  5. Mawby WJ, Holmes CH, Anstee DJ, Spring FA, Tanner MJ . Isolation and characterization of CD47 glycoprotein: a multispanning membrane protein which is the same as integrin-associated protein (IAP) and the ovarian tumour marker OA3. Biochem J 1994; 304, Pt 2 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP . Role of CD47 as a marker of self on red blood cells. Science 2000; 288: 2051–2054.

    Article  CAS  PubMed  Google Scholar 

  7. Oldenborg PA, Gresham HD, Lindberg FP . CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J Exp Med 2001; 193: 855–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lagadec P, Dejoux O, Ticchioni M, Cottrez F, Johansen M, Brown EJ et al. Involvement of a CD47-dependent pathway in platelet adhesion on inflamed vascular endothelium under flow. Blood 2003; 101: 4836–4843.

    Article  CAS  PubMed  Google Scholar 

  9. Gresham HD, Goodwin JL, Allen PM, Anderson DC, Brown EJ . A novel member of the integrin receptor family mediates Arg-Gly-Asp-stimulated neutrophil phagocytosis. J Cell Biol 1989; 108: 1935–1943.

    Article  CAS  PubMed  Google Scholar 

  10. Brown E, Hooper L, Ho T, Gresham H . Integrin-associated protein: a 50-kD plasma membrane antigen physically and functionally associated with integrins. J Cell Biol 1990; 111 (6 Pt 1): 2785–2794.

    Article  CAS  PubMed  Google Scholar 

  11. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009; 138: 271–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009; 138: 286–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 2010; 142: 699–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chao MP, Tang C, Pachynski RK, Chin R, Majeti R, Weissman IL . Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood 2011; 118: 4890–4901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA 2009; 106: 14016–14021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 2012; 109: 6662–6667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Campbell IG, Freemont PS, Foulkes W, Trowsdale J . An ovarian tumor marker with homology to vaccinia virus contains an IgV-like region and multiple transmembrane domains. Cancer Res 1992; 52: 5416–5420.

    CAS  PubMed  Google Scholar 

  18. Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002; 99: 1745–1757.

    Article  CAS  PubMed  Google Scholar 

  19. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL . The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241: 1632–1639.

    Article  CAS  PubMed  Google Scholar 

  20. Namikawa R, Ueda R, Kyoizumi S . Growth of human myeloid leukemias in the human marrow environment of SCID-hu mice. Blood 1993; 82: 2526–2536.

    CAS  PubMed  Google Scholar 

  21. Epstein J, Yaccoby S . The SCID-hu myeloma model. Methods Mol Med 2005; 113: 183–190.

    PubMed  Google Scholar 

  22. Seegmiller AC, Xu Y, McKenna RW, Karandikar NJ . Immunophenotypic differentiation between neoplastic plasma cells in mature B-cell lymphoma vs plasma cell myeloma. Am J Clin Pathol 2007; 127: 176–181.

    Article  PubMed  Google Scholar 

  23. Adams J . The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004; 4: 349–360.

    Article  CAS  PubMed  Google Scholar 

  24. Kim D, Park CY, Medeiros BC, Weissman IL . CD19-CD45low/-CD38high/CD138+ plasma cells enrich for human tumorigenic myeloma cells. Leukemia, (in press).

  25. Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, Zhao F et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res 2011; 71: 1374–1384.

    Article  CAS  PubMed  Google Scholar 

  26. Kikuchi Y, Uno S, Kinoshita Y, Yoshimura Y, Iida S, Wakahara Y et al. Apoptosis inducing bivalent single-chain antibody fragments against CD47 showed antitumor potency for multiple myeloma. Leuk Res 2005; 29: 445–450.

    Article  CAS  PubMed  Google Scholar 

  27. de Bruijn MF, Slieker WA, van der Loo JC, Voerman JS, van Ewijk W, Leenen PJ . Distinct mouse bone marrow macrophage precursors identified by differential expression of ER-MP12 and ER-MP20 antigens. Eur J Immunol 1994; 24: 2279–2284.

    Article  CAS  PubMed  Google Scholar 

  28. Yamao T, Noguchi T, Takeuchi O, Nishiyama U, Morita H, Hagiwara T et al. Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J Biol Chem 2002; 277: 39833–39839.

    Article  CAS  PubMed  Google Scholar 

  29. Okazawa H, Motegi S, Ohyama N, Ohnishi H, Tomizawa T, Kaneko Y et al. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol 2005; 174: 2004–2011.

    Article  CAS  PubMed  Google Scholar 

  30. Ide K, Wang H, Tahara H, Liu J, Wang X, Asahara T et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci USA 2007; 104: 5062–5066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kikuchi Y, Uno S, Yoshimura Y, Otabe K, Iida S, Oheda M et al. A bivalent single-chain Fv fragment against CD47 induces apoptosis for leukemic cells. Biochem Biophys Res Commun 2004; 315: 912–918.

    Article  CAS  PubMed  Google Scholar 

  32. Johansson U, Higginbottom K, Londei M . CD47 ligation induces a rapid caspase-independent apoptosis-like cell death in human monocytes and dendritic cells. Scand J Immunol 2004; 59: 40–49.

    Article  CAS  PubMed  Google Scholar 

  33. Blazar BR, Lindberg FP, Ingulli E, Panoskaltsis-Mortari A, Oldenborg PA, Iizuka K et al. CD47 (integrin-associated protein) engagement of dendritic cell and macrophage counterreceptors is required to prevent the clearance of donor lymphohematopoietic cells. J Exp Med 2001; 194: 541–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanz-Rodriguez F, Hidalgo A, Teixido J . Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001; 97: 346–351.

    Article  CAS  PubMed  Google Scholar 

  35. Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA . A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 2006; 24: 986–991.

    Article  CAS  PubMed  Google Scholar 

  36. Epstein J, Yaccoby S . Consequences of interactions between the bone marrow stroma and myeloma. Hematol J 2003; 4: 310–314.

    Article  PubMed  Google Scholar 

  37. Degrassi A, Hilbert DM, Rudikoff S, Anderson AO, Potter M, Coon HG . In vitro culture of primary plasmacytomas requires stromal cell feeder layers. Proc Natl Acad Sci USA 1993; 90: 2060–2064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS . Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93: 1658–1667.

    CAS  PubMed  Google Scholar 

  39. Nefedova Y, Landowski TH, Dalton WS . Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 2003; 17: 1175–1182.

    Article  CAS  PubMed  Google Scholar 

  40. Kukreja A, Radfar S, Sun BH, Insogna K, Dhodapkar MV . Dominant role of CD47-thrombospondin-1 interactions in myeloma-induced fusion of human dendritic cells: implications for bone disease. Blood 2009; 114: 3413–3421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Bruno C Medeiros for providing patient specimens; Libuse Jerabek, Theresa Storm and Adriane Mosley for laboratory and mouse management; Drs Ingrid Ibarra and Yasuo Mori for their help with interpretation of bone marrow cell morphology; Kipp Weiskopf for helpful comments on phagocytosis assay. In addition, we thank patients who consented to donate specimens. A part of this research was presented in the Lymphoma and Myeloma 2011 meeting. Dongkyoon Kim was supported by the Irvington Institute Fellowship Program of the Cancer Research Institute (initially by the Irvington Institute for Immunological Research and The Dana Foundation). This research was supported by co-sponsorship (SPO no.: 43710) of the Multiple Myeloma Research Foundation and the Leukemia Lymphoma Society, and by the Ludwig Institute. Irving L Weissman is a Daniel K and Virginia Ludwig Professor at Stanford.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Kim or I L Weissman.

Ethics declarations

Competing interests

ILW et al. filed US. Patent Application Serial No. 12/321,215 entitled ‘Methods for Manipulating Phagocytosis Mediated by CD47.’ The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Wang, J., Willingham, S. et al. Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells. Leukemia 26, 2538–2545 (2012). https://doi.org/10.1038/leu.2012.141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.141

Keywords

This article is cited by

Search

Quick links