Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma

Abstract

Chemoresistance is the major obstacle in multiple myeloma (MM) management. We previously showed that macrophages protect myeloma cells, on a cell contact basis, from melphalan or dexamethasone-induced apoptosis in vitro. In this study, we found that macrophage-mediated myeloma drug resistance was also seen with purified macrophages from myeloma patients’ bone marrow (BM) in vitro and was confirmed in vivo using the human myeloma-SCID (severe combined immunodeficient) mouse model. By profiling differentially regulated and paired plasma membrane protein genes, we showed that PSGL-1 (P-selectin glycoprotein ligand-1)/selectins and ICAM-1/CD18 played an important role in macrophage-mediated myeloma cell drug resistance, as blocking antibodies against these molecules or genetic knockdown of PSGL-1 or ICAM-1 in myeloma cells repressed macrophages’ ability to protect myeloma cells. Interaction of macrophages and myeloma cells via these molecules activated Src and Erk1/2 kinases and c-myc pathways and suppressed caspase activation induced by chemotherapy drugs. Thus, our study sheds new light on the mechanism of drug resistance in MM and provides novel targets for improving the efficacy of chemotherapy in patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV . Multiple myeloma. Blood 2008; 111: 2962–2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC . Multiple myeloma. Lancet 2009; 374: 324–339.

    Article  PubMed  Google Scholar 

  3. Hideshima T, Chauhan D, Shima Y, Raje N, Davies FE, Tai YT et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000; 96: 2943–2950.

    CAS  PubMed  Google Scholar 

  4. Knobloch J, Reimann K, Klotz LO, Ruther U . Thalidomide resistance is based on the capacity of the glutathione-dependent antioxidant defense. Mol Pharm 2008; 5: 1138–1144.

    Article  CAS  PubMed  Google Scholar 

  5. Laubach JP, Mitsiades CS, Roccaro AM, Ghobrial IM, Anderson KC, Richardson PG . Clinical challenges associated with bortezomib therapy in multiple myeloma and Waldenstroms macroglobulinemia. Leuk Lymphoma 2009; 50: 694–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kastritis E, Palumbo A, Dimopoulos MA . Treatment of relapsed/refractory multiple myeloma. Semin Hematol 2009; 46: 143–157.

    Article  CAS  PubMed  Google Scholar 

  7. Mohty B, El-Cheikh J, Yakoub-Agha I, Avet-Loiseau H, Moreau P, Mohty M . Treatment strategies in relapsed and refractory multiple myeloma: a focus on drug sequencing and ‘retreatment’ approaches in the era of novel agents. Leukemia 26: 73–85.

    Article  PubMed  Google Scholar 

  8. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007; 7: 585–598.

    Article  CAS  PubMed  Google Scholar 

  9. Podar K, Chauhan D, Anderson KC . Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 2009; 23: 10–24.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng Y, Cai Z, Wang S, Zhang X, Qian J, Hong S et al. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 2009; 114: 3625–3628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ito T, Kanzler H, Duramad O, Cao W, Liu YJ . Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells. Blood 2006; 107: 2423–2431.

    Article  CAS  PubMed  Google Scholar 

  12. Strobl H, Scheinecker C, Csmarits B, Majdic O, Knapp W . Flow cytometric analysis of intracellular CD68 molecule expression in normal and malignant haemopoiesis. Br J Haematol 1995; 90: 774–782.

    Article  CAS  PubMed  Google Scholar 

  13. Dobroff AS, Wang H, Melnikova VO, Villares GJ, Zigler M, Huang L et al. Silencing cAMP-response element-binding protein (CREB) identifies CYR61 as a tumor suppressor gene in melanoma. J Biol Chem 2009; 284: 26194–26206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. da Cunha JP, Galante PA, de Souza JE, de Souza RF, Carvalho PM, Ohara DT et al. Bioinformatics construction of the human cell surfaceome. Proc Natl Acad Sci USA 2009; 106: 16752–16757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang J, Wezeman M, Zhang X, Lin P, Wang M, Qian J et al. Human C-reactive protein binds activating Fcgamma receptors and protects myeloma tumor cells from apoptosis. Cancer Cell 2007; 12: 252–265.

    Article  PubMed  Google Scholar 

  16. Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 2009; 16: 309–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yaccoby S, Wezeman MJ, Henderson A, Cottler-Fox M, Yi Q, Barlogie B et al. Cancer and the microenvironment: myeloma-osteoclast interactions as a model. Cancer Res 2004; 64: 2016–2023.

    Article  CAS  PubMed  Google Scholar 

  18. Kukreja A, Hutchinson A, Dhodapkar K, Mazumder A, Vesole D, Angitapalli R et al. Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med 2006; 203: 1859–1865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lucas T, Abraham D, Aharinejad S . Modulation of tumor associated macrophages in solid tumors. Front Biosci 2008; 13: 5580–5588.

    Article  CAS  PubMed  Google Scholar 

  20. Pollard JW . Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4: 71–78.

    Article  CAS  PubMed  Google Scholar 

  21. Condeelis J, Pollard JW . Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006; 124: 263–266.

    Article  CAS  PubMed  Google Scholar 

  22. Zarbock A, Ley K, McEver RP, Hidalgo A . Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 118: 6743–6751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tchernychev B, Furie B, Furie BC . Peritoneal macrophages express both P-selectin and PSGL-1. J Cell Biol 2003; 163: 1145–1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li G, Sanders JM, Phan ET, Ley K, Sarembock IJ . Arterial macrophages and regenerating endothelial cells express P-selectin in atherosclerosis-prone apolipoprotein E-deficient mice. Am J Pathol 2005; 167: 1511–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Azab AK, Quang P, Azab F, Pitsillides C, Thompson B, Chonghaile T et al. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood 2012; 119: 1468–1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iqbal MS, Otsuyama K, Shamsasenjan K, Asaoku H, Mahmoud MS, Gondo T et al. Constitutively lower expressions of CD54 on primary myeloma cells and their different localizations in bone marrow. Eur J Haematol 2009; 83: 302–312.

    Article  CAS  PubMed  Google Scholar 

  27. Patarroyo M, Prieto J, Rincon J, Timonen T, Lundberg C, Lindbom L et al. Leukocyte-cell adhesion: a molecular process fundamental in leukocyte physiology. Immunol Rev 1990; 114: 67–108.

    Article  CAS  PubMed  Google Scholar 

  28. Platanias LC . Map kinase signaling pathways and hematologic malignancies. Blood 2003; 101: 4667–4679.

    Article  CAS  PubMed  Google Scholar 

  29. Gertz MA . New targets and treatments in multiple myeloma: Src family kinases as central regulators of disease progression. Leuk Lymphoma 2008; 49: 2240–2245.

    Article  CAS  PubMed  Google Scholar 

  30. Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E . Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 2010; 51: 1968–2005.

    Article  CAS  PubMed  Google Scholar 

  31. Podar K, Anderson KC . A therapeutic role for targeting c-Myc/Hif-1-dependent signaling pathways. Cell Cycle 2010; 9: 1722–1728.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Cancer Institute grants R01 CA138402, R01 CA138398, R01 CA163881, and P50 CA142509; Leukemia & Lymphoma Society translational research grants; the Multiple Myeloma Research Foundation, the Commonwealth Foundation for Cancer Research; the Center for Targeted Therapy of The University of Texas MD. Anderson Cancer Center; and a grant for International Cooperation of the National Natural Science Foundation of China (81120108018). We thank our departmental Myeloma Tissue Bank for providing patients’ samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Yi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y., Yang, J., Qian, J. et al. PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma. Leukemia 27, 702–710 (2013). https://doi.org/10.1038/leu.2012.272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.272

Keywords

This article is cited by

Search

Quick links