Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Hunting for clinical translation with innate-like immune cells and their receptors

Abstract

Allogeneic stem cell transplantation (allo-SCT) has so far been the most effective immunotherapy for hematological malignancies. However, it is becoming increasingly clear that the immunotherapeutic concepts underlying allo-SCT as well as the traditional dissection of the immune system into innate and adaptive arms need substantial refinement. More and more cell types migrate into the interface between innate and adaptive immunity, creating new terms such as innate-like lymphocytes. These innate-like cells, which include natural killer (NK) cells and γδT cells, could provide unique advantages to therapeutic interventions aimed at treating hematological malignancies, including protection against tumor relapse and viral infections without causing harmful graft-versus-host disease (GVHD). Recent molecular and conceptual insights into these subpopulations have opened new avenues to exploit their exciting features for the development of new compounds and to revisit current therapeutic standards in the treatment of hematological cancers. This review therefore aims to discuss the rapid progress in the understanding of molecular mechanisms by which NK cells and γδT cells recognize malignancies and viral infections, and the value of this increasing knowledge to complement the battle against life-threatening complications of current strategies to treat cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Copelan EA . Hematopoietic stem-cell transplantation. N Engl J Med 2006; 354: 1813–1826.

    Article  CAS  PubMed  Google Scholar 

  2. Bornhauser M, Thiede C, Babatz J, Schetelig J, Illmer T, Kiani A et al. Infusion of bcr/abl peptide-reactive donor T cells to achieve molecular remission of chronic myeloid leukemia after CD34+ selected allogeneic hematopoietic cell transplantation. Leukemia 2006; 20: 2055–2057.

    CAS  PubMed  Google Scholar 

  3. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 2005; 202: 379–386.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Meij P, Jedema I, van der Hoorn MA, Bongaerts R, Cox L, Wafelman AR et al. Generation and administration of HA-1-specific T-cell lines for the treatment of patients with relapsed leukemia after allogeneic stem cell transplantation: a pilot study. Haematologica 2012; 97: 1205–1208.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Van Driessche A, Gao L, Stauss HJ, Ponsaerts P, Van Bockstaele DR, Berneman ZN et al. Antigen-specific cellular immunotherapy of leukemia. Leukemia 2005; 19: 1863–1871.

    CAS  PubMed  Google Scholar 

  6. Hayday AC . Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 2009; 31: 184–196.

    CAS  PubMed  Google Scholar 

  7. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331: 44–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Baychelier F, Sennepin A, Ermonval M, Dorgham K, Debre P, Vieillard V . Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. Blood 2013; 122: 2935–2942.

    CAS  PubMed  Google Scholar 

  9. Delahaye NF, Rusakiewicz S, Martins I, Menard C, Roux S, Lyonnet L et al. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med 2011; 17: 700–707.

    CAS  PubMed  Google Scholar 

  10. Harly C, Guillaume Y, Nedellec S, Peigne CM, Monkkonen H, Monkkonen J et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gamma delta T-cell subset. Blood 2012; 120: 2269–2279.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Uldrich AP, Le NJ, Pellicci DG, Gherardin NA, McPherson KG, Lim RT et al. CD1d-lipid antigen recognition by the gamma delta TCR. Nat Immunol 2013; 14: 1137–1145.

    CAS  PubMed  Google Scholar 

  12. Vavassori S, Kumar A, Wan GS, Ramanjaneyulu GS, Cavallari M, El DS et al. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human gamma delta T cells. Nat Immunol 2013; 14: 908–916.

    CAS  PubMed  Google Scholar 

  13. Scheper W, van DS, Kersting S, Pietersma F, Lindemans C, Hol S et al. Gamma deltaT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leukemia 2013; 27: 1328–1338.

    CAS  PubMed  Google Scholar 

  14. Willcox CR, Pitard V, Netzer S, Couzi L, Salim M, Silberzahn T et al. Cytomegalovirus and tumor stress surveillance by binding of a human gamma delta T cell antigen receptor to endothelial protein C receptor. Nat Immunol 2012; 13: 872–879.

    CAS  PubMed  Google Scholar 

  15. Green ML, Leisenring WM, Xie H, Walter RB, Mielcarek M, Sandmaier BM et al. CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia. Blood 2013; 122: 1316–1324.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ito S, Pophali P, Co W, Koklanaris EK, Superata J, Fahle GA et al. CMV reactivation is associated with a lower incidence of relapse after allo-SCT for CML. Bone Marrow Transplant 2013; 48: 1313–1316.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cooper MA, Fehniger TA, Caligiuri MA . The biology of human natural killer-cell subsets. Trends Immunol 2001; 22: 633–640.

    Article  CAS  PubMed  Google Scholar 

  18. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285: 727–729.

    CAS  PubMed  Google Scholar 

  19. Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 2001; 14: 123–133.

    CAS  PubMed  Google Scholar 

  20. Marcu-Malina V, Heijhuurs S, van Buuren M, Hartkamp L, Strand S, Sebestyen Z et al. Redirecting alphabeta T cells against cancer cells by transfer of a broadly tumor-reactive gamma deltaT-cell receptor. Blood 2011; 118: 50–59.

    CAS  PubMed  Google Scholar 

  21. Antoun A, Vekaria D, Salama RA, Pratt G, Jobson S, Cook M et al. The genotype of RAET1L (ULBP6), a ligand for human NKG2D (KLRK1), markedly influences the clinical outcome of allogeneic stem cell transplantation. Br J Haematol 2012; 159: 589–598.

    CAS  PubMed  Google Scholar 

  22. Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 1999; 190: 1505–1516.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 1997; 186: 1129–1136.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 1998; 187: 2065–2072.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 2009; 206: 1495–1503.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pogge von Strandmann E, Simhadri VR, von TB, Sasse S, Reiners KS, Hansen HP et al. Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 2007; 27: 965–974.

    CAS  PubMed  Google Scholar 

  27. Bloushtain N, Qimron U, Bar-Ilan A, Hershkovitz O, Gazit R, Fima E et al. Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J Immunol 2004; 173: 2392–2401.

    CAS  PubMed  Google Scholar 

  28. Hershkovitz O, Jivov S, Bloushtain N, Zilka A, Landau G, Bar-Ilan A et al. Characterization of the recognition of tumor cells by the natural cytotoxicity receptor, NKp44. Biochemistry 2007; 46: 7426–7436.

    CAS  PubMed  Google Scholar 

  29. Sanderson RD, Yang Y, Kelly T, MacLeod V, Dai Y, Theus A . Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment: growth regulation and the prospect of new cancer therapies. J Cell Biochem 2005; 96: 897–905.

    CAS  PubMed  Google Scholar 

  30. Rosental B, Brusilovsky M, Hadad U, Oz D, Appel MY, Afergan F et al. Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J Immunol 2011; 187: 5693–5702.

    CAS  PubMed  Google Scholar 

  31. Parham P . MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005; 5: 201–214.

    CAS  PubMed  Google Scholar 

  32. Ciccone E, Pende D, Viale O, Than A, Di DC, Orengo AM et al. Involvement of HLA class I alleles in natural killer (NK) cell-specific functions: expression of HLA-Cw3 confers selective protection from lysis by alloreactive NK clones displaying a defined specificity (specificity 2). J Exp Med 1992; 176: 963–971.

    CAS  PubMed  Google Scholar 

  33. Maier S, Tertilt C, Chambron N, Gerauer K, Huser N, Heidecke CD et al. Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28-/- mice. Nat Med 2001; 7: 557–562.

    CAS  PubMed  Google Scholar 

  34. Eissens DN, Schaap NP, Preijers FW, Dolstra H, van CB, Schattenberg AV et al. CD3+/CD19+-depleted grafts in HLA-matched allogeneic peripheral blood stem cell transplantation lead to early NK cell cytolytic responses and reduced inhibitory activity of NKG2A. Leukemia 2010; 24: 583–591.

    CAS  PubMed  Google Scholar 

  35. Federmann B, Hagele M, Pfeiffer M, Wirths S, Schumm M, Faul C et al. Immune reconstitution after haploidentical hematopoietic cell transplantation: impact of reduced intensity conditioning and CD3/CD19 depleted grafts. Leukemia 2011; 25: 121–129.

    CAS  PubMed  Google Scholar 

  36. Savani BN, Mielke S, Adams S, Uribe M, Rezvani K, Yong AS et al. Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leukemia 2007; 21: 2145–2152.

    CAS  PubMed  Google Scholar 

  37. Aversa F, Terenzi A, Tabilio A, Falzetti F, Carotti A, Ballanti S et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol 2005; 23: 3447–3454.

    PubMed  Google Scholar 

  38. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    CAS  PubMed  Google Scholar 

  39. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S . Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 2013; 31: 227–258.

    CAS  PubMed  Google Scholar 

  40. Graef T, Moesta AK, Norman PJ, Abi-Rached L, Vago L, Older Aguilar AM et al. KIR2DS4 is a product of gene conversion with KIR3DL2 that introduced specificity for HLA-A*11 while diminishing avidity for HLA-C. J Exp Med 2009; 206: 2557–2572.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Frazier WR, Steiner N, Hou L, Dakshanamurthy S, Hurley CK . Allelic variation in KIR2DL3 generates a KIR2DL2-like receptor with increased binding to its HLA-C ligand. J Immunol 2013; 190: 6198–6208.

    CAS  PubMed  Google Scholar 

  42. Kroger N, Zabelina T, Berger J, Duske H, Klyuchnikov E, Binder T et al. Donor KIR haplotype B improves progression-free and overall survival after allogeneic hematopoietic stem cell transplantation for multiple myeloma. Leukemia 2011; 25: 1657–1661.

    CAS  PubMed  Google Scholar 

  43. Gasteiger G, Hemmers S, Firth MA, Le FA, Huse M, Sun JC et al. IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J Exp Med 2013; 210: 1167–1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L . Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol 2008; 9: 486–494.

    CAS  PubMed  Google Scholar 

  45. Jost S, Altfeld M . Control of human viral infections by natural killer cells. Annu Rev Immunol 2013; 31: 163–194.

    CAS  PubMed  Google Scholar 

  46. Chalupny NJ, Rein-Weston A, Dosch S, Cosman D . Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochem Biophys Res Commun 2006; 346: 175–181.

    CAS  PubMed  Google Scholar 

  47. Welte SA, Sinzger C, Lutz SZ, Singh-Jasuja H, Sampaio KL, Eknigk U et al. Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur J Immunol 2003; 33: 194–203.

    CAS  PubMed  Google Scholar 

  48. Arnon TI, Achdout H, Levi O, Markel G, Saleh N, Katz G et al. Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immunol 2005; 6: 515–523.

    CAS  PubMed  Google Scholar 

  49. Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 2012; 119: 2665–2674.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lopez-Verges S, Milush JM, Schwartz BS, Pando MJ, Jarjoura J, York VA et al. Expansion of a unique CD57(+)NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci USA 2011; 108: 14725–14732.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gallez-Hawkins GM, Franck AE, Li X, Thao L, Oki A, Gendzekhadze K et al. Expression of activating KIR2DS2 and KIR2DS4 genes after hematopoietic cell transplantation: relevance to cytomegalovirus infection. Biol Blood Marrow Transplant 2011; 17: 1662–1672.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zaia JA, Sun JY, Gallez-Hawkins GM, Thao L, Oki A, Lacey SF et al. The effect of single and combined activating killer immunoglobulin-like receptor genotypes on cytomegalovirus infection and immunity after hematopoietic cell transplantation. Biol Blood Marrow Transplant 2009; 15: 315–325.

    PubMed  PubMed Central  Google Scholar 

  53. Kroger N, Binder T, Zabelina T, Wolschke C, Schieder H, Renges H et al. Low number of donor activating killer immunoglobulin-like receptors (KIR) genes but not KIR-ligand mismatch prevents relapse and improves disease-free survival in leukemia patients after in vivo T-cell depleted unrelated stem cell transplantation. Transplantation 2006; 82: 1024–1030.

    PubMed  Google Scholar 

  54. Marin D, Gabriel IH, Ahmad S, Foroni L, de LH, Clark R et al. KIR2DS1 genotype predicts for complete cytogenetic response and survival in newly diagnosed chronic myeloid leukemia patients treated with imatinib. Leukemia 2012; 26: 296–302.

    CAS  PubMed  Google Scholar 

  55. Triplett BM, Horwitz EM, Iyengar R, Turner V, Holladay MS, Gan K et al. Effects of activating NK cell receptor expression and NK cell reconstitution on the outcomes of unrelated donor hematopoietic cell transplantation for hematologic malignancies. Leukemia 2009; 23: 1278–1287.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Verheyden S, Schots R, Duquet W, Demanet C . A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia 2005; 19: 1446–1451.

    CAS  PubMed  Google Scholar 

  57. Bukowski JF, Biron CA, Welsh RM . Elevated natural killer cell-mediated cytotoxicity, plasma interferon, and tumor cell rejection in mice persistently infected with lymphocytic choriomeningitis virus. J Immunol 1983; 131: 991–996.

    CAS  PubMed  Google Scholar 

  58. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L . Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 2012; 12: 239–252.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hirano M, Guo P, McCurley N, Schorpp M, Das S, Boehm T et al. Evolutionary implications of a third lymphocyte lineage in lampreys. Nature 2013; 501: 435–438.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bezman NA, Kim CC, Sun JC, Min-Oo G, Hendricks DW, Kamimura Y et al. Molecular definition of the identity and activation of natural killer cells. Nat Immunol 2012; 13: 1000–1009.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Correia DV, Lopes A, Silva-Santos B . Tumor cell recognition by gamma delta T lymphocytes: T-cell receptor vs. NK-cell receptors. Oncoimmunology 2013; 2: e22892.

    PubMed  PubMed Central  Google Scholar 

  62. Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T et al. MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 2001; 15: 83–93.

    CAS  PubMed  Google Scholar 

  63. Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T . Activation of V gamma9Vdelta2 T cells by NKG2D. J Immunol 2005; 175: 2144–2151.

    CAS  PubMed  Google Scholar 

  64. Correia DV, Fogli M, Hudspeth K, da Silva MG, Mavilio D, Silva-Santos B . Differentiation of human peripheral blood Vdelta1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 2011; 118: 992–1001.

    CAS  PubMed  Google Scholar 

  65. Vantourout P, Hayday A . Six-of-the-best: unique contributions of gamma delta T cells to immunology. Nat Rev Immunol 2013; 13: 88–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De LG . Human T cell receptor gamma delta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003; 197: 163–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Grunder C, van Dorp S, Hol S, Drent E, Straetemans T, Heijhuurs S et al. Gamma9 and delta2CDR3 domains regulate functional avidity of T cells harboring gamma9delta2TCRs. Blood 2012; 120: 5153–5162.

    PubMed  Google Scholar 

  68. Bai L, Picard D, Anderson B, Chaudhary V, Luoma A, Jabri B et al. The majority of CD1d-sulfatide-specific T cells in human blood use a semiinvariant Vdelta1 TCR. Eur J Immunol 2012; 42: 2505–2510.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Groh V, Steinle A, Bauer S, Spies T . Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 1998; 279: 1737–1740.

    CAS  PubMed  Google Scholar 

  70. Russano AM, Bassotti G, Agea E, Bistoni O, Mazzocchi A, Morelli A et al. CD1-restricted recognition of exogenous and self-lipid antigens by duodenal gammadelta+ T lymphocytes. J Immunol 2007; 178: 3620–3626.

    CAS  PubMed  Google Scholar 

  71. Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS et al. Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med 2000; 191: 937–948.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu B, Pizarro JC, Holmes MA, McBeth C, Groh V, Spies T et al. Crystal structure of a gammadelta T-cell receptor specific for the human MHC class I homolog MICA. Proc Natl Acad Sci USA 2011; 108: 2414–2419.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Leslie DS, Vincent MS, Spada FM, Das H, Sugita M, Morita CT et al. CD1-mediated gamma/delta T cell maturation of dendritic cells. J Exp Med 2002; 196: 1575–1584.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Brandes M, Willimann K, Moser B . Professional antigen-presentation function by human gamma delta T Cells. Science 2005; 309: 264–268.

    CAS  PubMed  Google Scholar 

  75. Brandes M, Willimann K, Bioley G, Levy N, Eberl M, Luo M et al. Cross-presenting human gamma delta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci U S A 2009; 106: 2307–2312.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zheng J, Liu Y, Lau YL, Tu W . gamma delta-T cells: an unpolished sword in human anti-infection immunity. Cell Mol Immunol 2013; 10: 50–57.

    CAS  PubMed  Google Scholar 

  77. Dechanet J, Merville P, Lim A, Retiere C, Pitard V, Lafarge X et al. Implication of gamma delta T cells in the human immune response to cytomegalovirus. J Clin Invest 1999; 103: 1437–1449.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Vermijlen D, Brouwer M, Donner C, Liesnard C, Tackoen M, Van RM et al. Human cytomegalovirus elicits fetal gamma delta T cell responses in utero. J Exp Med 2010; 207: 807–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Knight A, Madrigal AJ, Grace S, Sivakumaran J, Kottaridis P, Mackinnon S et al. The role of Vdelta2-negative gamma delta T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood 2010; 116: 2164–2172.

    CAS  PubMed  Google Scholar 

  80. Halary F, Pitard V, Dlubek D, Krzysiek R, de la SH, Merville P et al. Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J Exp Med 2005; 201: 1567–1578.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ljungman P . CMV a warrior against leukemia? Blood 2013; 122: 1101–1102.

    CAS  PubMed  Google Scholar 

  82. Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR et al. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant 2003; 32: 177–186.

    CAS  PubMed  Google Scholar 

  83. Miller JS, Tessmer-Tuck J, Pierson BA, Weisdorf D, McGlave P, Blazar BR et al. Low dose subcutaneous interleukin-2 after autologous transplantation generates sustained in vivo natural killer cell activity. Biol Blood Marrow Transplant 1997; 3: 34–44.

    CAS  PubMed  Google Scholar 

  84. Baumgarten E, Schmid H, Pohl U, Brzoska J, Linderkamp C, Siegert W et al. Low-dose natural interleukin-2 and recombinant interferon-gamma following autologous bone marrow grafts in pediatric patients with high-risk acute leukemia. Leukemia 1994; 8: 850–855.

    CAS  PubMed  Google Scholar 

  85. Willemze R, Rodrigues CA, Labopin M, Sanz G, Michel G, Socie G et al. KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia 2009; 23: 492–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Farag SS, Bacigalupo A, Eapen M, Hurley C, Dupont B, Caligiuri MA et al. The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol Blood Marrow Transplant 2006; 12: 876–884.

    CAS  PubMed  Google Scholar 

  87. Weisdorf D, Cooley S, Devine S, Fehniger TA, DiPersio J, Anasetti C et al. T cell-depleted partial matched unrelated donor transplant for advanced myeloid malignancy: KIR ligand mismatch and outcome. Biol Blood Marrow Transplant 2012; 18: 937–943.

    PubMed  Google Scholar 

  88. Huang XJ, Zhao XY, Liu DH, Liu KY, Xu LP . Deleterious effects of KIR ligand incompatibility on clinical outcomes in haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion. Leukemia 2007; 21: 848–851.

    CAS  PubMed  Google Scholar 

  89. Bishara A, De SD, Witt CC, Brautbar C, Christiansen FT, Or R et al. The beneficial role of inhibitory KIR genes of HLA class I NK epitopes in haploidentically mismatched stem cell allografts may be masked by residual donor-alloreactive T cells causing GVHD. Tissue Antigens 2004; 63: 204–211.

    CAS  PubMed  Google Scholar 

  90. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105: 3051–3057.

    CAS  PubMed  Google Scholar 

  91. Venstrom JM, Pittari G, Gooley TA, Chewning JH, Spellman S, Haagenson M et al. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N Engl J Med 2012; 367: 805–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fournie JJ, Sicard H, Poupot M, Bezombes C, Blanc A, Romagne F et al. What lessons can be learned from gamma delta T cell-based cancer immunotherapy trials? Cell Mol Immunol 2013; 10: 35–41.

    CAS  PubMed  Google Scholar 

  93. Kunzmann V, Smetak M, Kimmel B, Weigang-Koehler K, Goebeler M, Birkmann J et al. Tumor-promoting versus tumor-antagonizing roles of gamma delta T cells in cancer immunotherapy: results from a prospective phase I/II trial. J Immunother 2012; 35: 205–213.

    CAS  PubMed  Google Scholar 

  94. Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T et al. Gamma delta T cells for immune therapy of patients with lymphoid malignancies. Blood 2003; 102: 200–206.

    CAS  PubMed  Google Scholar 

  95. Abe Y, Muto M, Nieda M, Nakagawa Y, Nicol A, Kaneko T et al. Clinical and immunological evaluation of zoledronate-activated Vgamma9gammadelta T-cell-based immunotherapy for patients with multiple myeloma. Exp Hematol 2009; 37: 956–968.

    CAS  PubMed  Google Scholar 

  96. Lang JM, Kaikobad MR, Wallace M, Staab MJ, Horvath DL, Wilding G et al. Pilot trial of interleukin-2 and zoledronic acid to augment gammadelta T cells as treatment for patients with refractory renal cell carcinoma. Cancer Immunol Immunother 2011; 60: 1447–1460.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Moser B, Eberl M . Gammadelta T-APCs: a novel tool for immunotherapy? Cell Mol Life Sci 2011; 68: 2443–2452.

    CAS  PubMed  Google Scholar 

  98. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T et al. Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 2007; 56: 469–476.

    CAS  PubMed  Google Scholar 

  99. Oevermann L, Lang P, Feuchtinger T, Schumm M, Teltschik HM, Schlegel P et al. Immune reconstitution and strategies for rebuilding the immune system after haploidentical stem cell transplantation. Ann N Y Acad Sci 2012; 1266: 161–170.

    CAS  PubMed  Google Scholar 

  100. Godder KT, Henslee-Downey PJ, Mehta J, Park BS, Chiang KY, Abhyankar S et al. Long term disease-free survival in acute leukemia patients recovering with increased gamma delta T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant 2007; 39: 751–757.

    CAS  PubMed  Google Scholar 

  101. Maniar A, Zhang X, Lin W, Gastman BR, Pauza CD, Strome SE et al. Human gamma delta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood 2010; 116: 1726–1733.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Steinman RM, Hawiger D, Nussenzweig MC . Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21: 685–711.

    CAS  PubMed  Google Scholar 

  103. Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP . Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 2006; 6: 383–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ye J, Ma C, Wang F, Hsueh EC, Toth K, Huang Y et al. Specific recruitment of gamma delta regulatory T cells in human breast cancer. Cancer Res 2013; 73: 6137–6148.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ye J, Ma C, Hsueh EC, Eickhoff CS, Zhang Y, Varvares MA et al. Tumor-derived gamma delta regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J Immunol 2013; 190: 2403–2414.

    CAS  PubMed  Google Scholar 

  106. Cai Y, Shen X, Ding C, Qi C, Li K, Li X et al. Pivotal role of dermal IL-17-producing gamma delta T cells in skin inflammation. Immunity 2011; 35: 596–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Laggner U, Di MP, Perera GK, Hundhausen C, Lacy KE, Ali N et al. Identification of a novel proinflammatory human skin-homing Vgamma9Vdelta2 T cell subset with a potential role in psoriasis. J Immunol 2011; 187: 2783–2793.

    CAS  PubMed  Google Scholar 

  108. Barber A, Zhang T, DeMars LR, Conejo-Garcia J, Roby KF, Sentman CL . Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer. Cancer Res 2007; 67: 5003–5008.

    CAS  PubMed  Google Scholar 

  109. Zhang T, Barber A, Sentman CL . Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. Cancer Res 2006; 66: 5927–5933.

    CAS  PubMed  Google Scholar 

  110. Zhang T, Lemoi BA, Sentman CL . Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. Blood 2005; 106: 1544–1551.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Chang YH, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D . A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res 2013; 73: 1777–1786.

    CAS  PubMed  Google Scholar 

  112. Klingemann HG . Cellular therapy of cancer with natural killer cells-where do we stand? Cytotherapy 2013; 15: 1185–1194.

    CAS  PubMed  Google Scholar 

  113. Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 2008; 10: 625–632.

    CAS  PubMed  Google Scholar 

  114. Esser R, Muller T, Stefes D, Kloess S, Seidel D, Gillies SD et al. NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cell Mol Med 2012; 16: 569–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang T, Sentman CL . Cancer immunotherapy using a bispecific NK receptor fusion protein that engages both T cells and tumor cells. Cancer Res 2011; 71: 2066–2076.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Arnon TI, Markel G, Bar-Ilan A, Hanna J, Fima E, Benchetrit F et al. Harnessing soluble NK cell killer receptors for the generation of novel cancer immune therapy. PLoS One 2008; 3: e2150.

    PubMed  PubMed Central  Google Scholar 

  117. Vey N, Bourhis JH, Boissel N, Bordessoule D, Prebet T, Charbonnier A et al. A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood 2012; 120: 4317–4323.

    CAS  PubMed  Google Scholar 

  118. Marcu-Malina V, van Dorp S, Kuball J . Re-targeting T-cells against cancer by gene-transfer of tumor-reactive receptors. Expert Opin Biol Ther 2009; 9: 579–591.

    CAS  PubMed  Google Scholar 

  119. Scheper W, Grunder C, Kuball J . Multifunctional gammadelta T cells and their receptors for targeted anticancer immunotherapy. Oncoimmunology 2013; 2: e23974.

    PubMed  PubMed Central  Google Scholar 

  120. Sadelain M, Brentjens R, Riviere I . The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009; 21: 215–223.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Evelyn Ullrich for critical reading of the manuscript. This work was supported by grants of ZonMW 43400003, VIDI-ZonMW 917.11.337, LSBR 0902, AICR 10-736, and KWF UU-2010-4669.

Author contributions

WS, CG, TS, ZS and JK wrote the manuscript; all authors agreed on the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kuball.

Ethics declarations

Competing interests

Clinical trials NTR2463 and NTR3079 were supported by Miltenyi Biotec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheper, W., Gründer, C., Straetemans, T. et al. Hunting for clinical translation with innate-like immune cells and their receptors. Leukemia 28, 1181–1190 (2014). https://doi.org/10.1038/leu.2013.378

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.378

Keywords

This article is cited by

Search

Quick links