Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2

Abstract

Recent studies have revealed recurrent mutations of the NOTCH1, SF3B1 and BIRC3 genes in chronic lymphocytic leukemia (CLL), especially among aggressive, chemorefractory cases. Nevertheless, it is currently unknown whether their presence may differ in subsets of patients carrying stereotyped B-cell receptors and also exhibiting distinct prognoses. Here, we analyzed the mutation status of NOTCH1, SF3B1 and BIRC3 in three subsets with particularly poor prognosis, that is, subset #1, #2 and #8, aiming to explore links between genetic aberrations and immune signaling. A remarkably higher frequency of SF3B1 mutations was revealed in subset #2 (44%) versus subset #1 and #8 (4.6% and 0%, respectively; P<0.001). In contrast, the frequency of NOTCH1 mutations in subset #2 was only 8%, lower than the frequency observed in either subset #1 or #8 (19% and 14%, respectively; P=0.04 for subset #1 versus #2). No associations were found for BIRC3 mutations that overall were rare. The apparent non-random association of certain mutations with stereotyped CLL subsets alludes to subset-biased acquisition of genomic aberrations, perhaps consistent with particular antigen/antibody interactions. These novel findings assist in unraveling specific mechanisms underlying clinical aggressiveness in poor-prognostic stereotyped subsets, with far-reaching implications for understanding their clonal evolution and implementing biologically oriented therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998; 102: 1515–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  3. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  4. Tobin G, Thunberg U, Johnson A, Eriksson I, Soderberg O, Karlsson K et al. Chronic lymphocytic leukemias utilizing the VH3–21 gene display highly restricted Vlambda2–14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood 2003; 101: 4952–4957.

    Article  CAS  PubMed  Google Scholar 

  5. Messmer BT, Albesiano E, Efremov DG, Ghiotto F, Allen SL, Kolitz J et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med 2004; 200: 519–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tobin G, Thunberg U, Karlsson K, Murray F, Laurell A, Willander K et al. Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood 2004; 104: 2879–2885.

    Article  CAS  PubMed  Google Scholar 

  7. Stamatopoulos K, Belessi C, Moreno C, Boudjograh M, Guida G, Smilevska T et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood 2007; 109: 259–270.

    Article  CAS  PubMed  Google Scholar 

  8. Murray F, Darzentas N, Hadzidimitriou A, Tobin G, Boudjogra M, Scielzo C et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood 2008; 111: 1524–1533.

    Article  CAS  PubMed  Google Scholar 

  9. Bomben R, Dal Bo M, Capello D, Forconi F, Maffei R, Laurenti L et al. Molecular and clinical features of chronic lymphocytic leukaemia with stereotyped B cell receptors: results from an Italian multicentre study. Br J Haematol 2009; 144: 492–506.

    Article  PubMed  Google Scholar 

  10. Darzentas N, Hadzidimitriou A, Murray F, Hatzi K, Josefsson P, Laoutaris N et al. A different ontogenesis for chronic lymphocytic leukemia cases carrying stereotyped antigen receptors: molecular and computational evidence. Leukemia 2010; 24: 125–132.

    Article  CAS  PubMed  Google Scholar 

  11. Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F, Yan XJ et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 2012; 119: 4467–4475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiorazzi N, Ferrarini M . Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood 2011; 117: 1781–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosen A, Murray F, Evaldsson C, Rosenquist R . Antigens in chronic lymphocytic leukemia—implications for cell origin and leukemogenesis. Semin Cancer Biol 2010; 20: 400–409.

    Article  CAS  PubMed  Google Scholar 

  14. Ghia P, Stamatopoulos K, Belessi C, Moreno C, Stella S, Guida G et al. Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3–21 gene. Blood 2005; 105: 1678–1685.

    Article  CAS  PubMed  Google Scholar 

  15. Thorselius M, Krober A, Murray F, Thunberg U, Tobin G, Buhler A et al. Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3–21—using chronic lymphocytic leukemia patients independent of geographic origin and mutational status. Blood 2006; 107: 2889–2894.

    Article  CAS  PubMed  Google Scholar 

  16. Ghiotto F, Fais F, Valetto A, Albesiano E, Hashimoto S, Dono M et al. Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J Clin Invest 2004; 113: 1008–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rossi D, Spina V, Cerri M, Rasi S, Deambrogi C, De Paoli L et al. Stereotyped B-cell receptor is an independent risk factor of chronic lymphocytic leukemia transformation to Richter syndrome. Clin Cancer Res 2009; 15: 4415–4422.

    Article  CAS  PubMed  Google Scholar 

  18. Falt S, Merup M, Tobin G, Thunberg U, Gahrton G, Rosenquist R et al. Distinctive gene expression pattern in VH3–21 utilizing B-cell chronic lymphocytic leukemia. Blood 2005; 106: 681–689.

    Article  PubMed  Google Scholar 

  19. Martin-Subero JI, Ibbotson R, Klapper W, Michaux L, Callet-Bauchu E, Berger F et al. A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation. Leukemia 2007; 21: 1532–1544.

    Article  CAS  PubMed  Google Scholar 

  20. Athanasiadou A, Stamatopoulos K, Gaitatzi M, Stavroyianni N, Fassas A, Anagnostopoulos A . Recurrent cytogenetic findings in subsets of patients with chronic lymphocytic leukemia expressing IgG-switched stereotyped immunoglobulins. Haematologica 2008; 93: 473–474.

    Article  PubMed  Google Scholar 

  21. Chapiro E, Radford-Weiss I, Bastard C, Luquet I, Lefebvre C, Callet-Bauchu E et al. The most frequent t(14;19)(q32;q13)-positive B-cell malignancy corresponds to an aggressive subgroup of atypical chronic lymphocytic leukemia. Leukemia 2008; 22: 2123–2127.

    Article  CAS  PubMed  Google Scholar 

  22. Marincevic M, Cahill N, Gunnarsson R, Isaksson A, Mansouri M, Goransson H et al. High-density screening reveals a different spectrum of genomic aberrations in chronic lymphocytic leukemia patients with ‘stereotyped’ IGHV3–21 and IGHV4–34 B-cell receptors. Haematologica 2010; 95: 1519–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marincevic M, Mansouri M, Kanduri M, Isaksson A, Goransson H, Smedby KE et al. Distinct gene expression profiles in subsets of chronic lymphocytic leukemia expressing stereotyped IGHV4–34 B-cell receptors. Haematologica 2010; 95: 2072–2079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arvaniti E, Ntoufa S, Papakonstantinou N, Touloumenidou T, Laoutaris N, Anagnostopoulos A et al. Toll-like receptor signaling pathway in chronic lymphocytic leukemia: distinct gene expression profiles of potential pathogenic significance in specific subsets of patients. Haematologica 2011; 96: 1644–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanduri M, Marincevic M, Halldorsdottir AM, Mansouri L, Junevik K, Ntoufa S et al. Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles. Epigenetics 2012; 7: 1435–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ntoufa S, Vardi A, Papakonstantinou N, Anagnostopoulos A, Aleporou-Marinou V, Belessi C et al. Distinct innate immunity pathways to activation and tolerance in subgroups of chronic lymphocytic leukemia with distinct immunoglobulin receptors. Mol Med 2012; 18: 1281–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208: 1389–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365: 2497–2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2011; 44: 47–52.

    Article  PubMed  Google Scholar 

  31. Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 2012; 26: 542–545.

    Article  CAS  PubMed  Google Scholar 

  32. Lasho TL, Finke CM, Hanson CA, Jimma T, Knudson RA, Ketterling RP et al. SF3B1 mutations in primary myelofibrosis: clinical, histopathology and genetic correlates among 155 patients. Leukemia 2012; 26: 1135–1137.

    Article  CAS  PubMed  Google Scholar 

  33. Damm F, Thol F, Kosmider O, Kade S, Loffeld P, Dreyfus F et al. SF3B1 mutations in myelodysplastic syndromes: clinical associations and prognostic implications. Leukemia 2012; 26: 1137–1140.

    Article  CAS  PubMed  Google Scholar 

  34. Villamor N, Conde L, Martinez-Trillos A, Cazorla M, Navarro A, Beà S et al. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia 2012; e-pub ahead of print 6 December 2012; doi: 10.1038/leu.2012.357.

    Article  PubMed  Google Scholar 

  35. Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 2012; 119: 2854–2862.

    Article  CAS  PubMed  Google Scholar 

  36. Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012; 119: 521–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mansouri L, Cahill N, Gunnarsson R, Smedby KE, Tjonnfjord E, Hjalgrim H et al. NOTCH1 and SF3B1 mutations can be added to the hierarchical prognostic classification in chronic lymphocytic leukemia. Leukemia 2013; 27: 512–514.

    Article  CAS  PubMed  Google Scholar 

  38. Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica 2012; 97: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oscier DG, Rose-Zerilli MJ, Winkelmann N, Gonzalez de Castro D, Gomez B, Forster J et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood 2013; 121: 468–475.

    Article  CAS  PubMed  Google Scholar 

  40. Catovsky D, Richards S, Matutes E, Oscier D, Dyer MJ, Bezares RF et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet 2007; 370: 230–239.

    Article  CAS  PubMed  Google Scholar 

  41. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute—Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Nordic Cancer Union, the Swedish Cancer Society, the Swedish Research Council and the Lion’s Cancer Research Foundation, Uppsala, Sweden; Associazione Italiana per la Ricerca sul Cancro (AIRC) (Investigator grant and Molecular Clinical Oncology Program 5xMille no. 9965), Milano, Italy; Ricerca Finalizzata 2010, Ministero della Salute, Roma, Italy; PRIN, MIUR, Roma, Italy; Leukaemia and Lymphoma Research, UK; The Kay Kendell Leukaemia Fund, London, UK; ENosAI project (code 09SYN-13-880) co-funded by the EU and the Hellenic General Secretariat for Research and Technology, Athens, Greece; The NIH/National Cancer Institute (RO1 Grant CA081554), Bethesda, MD, USA; IGA MZ CR NT13493-4/2012 and MSMT CR projects CZ.1.05/1.1.00/02.0068 (CEITEC) and CZ.1.07/2.3.00/20.0045 (SuPReMMe). We thank Jana Kminkova, Barbara Kantorova, Veronika Navrkalova and Hana Skuhrova Francova for their intensive and enthusiastic help with DNA analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Rosenquist.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strefford, J., Sutton, LA., Baliakas, P. et al. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia 27, 2196–2199 (2013). https://doi.org/10.1038/leu.2013.98

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.98

Keywords

This article is cited by

Search

Quick links