Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin’s lymphoma

Abstract

Transforming growth factor beta (TGF-β) has an important role in mediating T-cell suppression in B-cell non-Hodgkin lymphoma (NHL). However, the underlying mechanism responsible for TGF-β-mediated inhibition of effector memory T (Tm) cells is largely unknown. As reported here, we show that exhaustion is a major mechanism by which TGF-β inhibits Tm cells, and TGF-β mediated exhaustion is associated with upregulation of CD70. We found that TGF-β upregulates CD70 expression on effector Tm cells while it preferentially induces Foxp3 expression in naive T cells. CD70 induction by TGF-β is Smad3-dependent and involves IL-2/Stat5 signaling. CD70+ T cells account for TGF-β-induced exhaustion of effector Tm cells. Both TGF-β-induced and preexisting intratumoral CD70+ effector Tm cells from B-cell NHL have an exhausted phenotype and express higher levels of PD-1 and TIM-3 compared with CD70 T cells. Signaling transduction, proliferation and cytokine production are profoundly decreased in these cells, and they are highly susceptible to apoptosis. Clinically, intratumoral CD70-expressing T cells are prevalent in follicular B-cell lymphoma (FL) biopsy specimens, and increased numbers of intratumoral CD70+ T cells correlate with an inferior patient outcome. These findings confirm TGF-β-mediated effector Tm cell exhaustion as an important mechanism of immune suppression in B-cell NHL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Gallimore A, Glithero A, Godkin A, Tissot AC, Pluckthun A, Elliott T et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J Exp Med 1998; 187: 1383–1393.

    Article  CAS  Google Scholar 

  2. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 1998; 188: 2205–2213.

    Article  CAS  Google Scholar 

  3. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006; 443: 350–354.

    Article  CAS  Google Scholar 

  4. D'Souza M, Fontenot AP, Mack DG, Lozupone C, Dillon S, Meditz A et al. Programmed death 1 expression on HIV-specific CD4+ T cells is driven by viral replication and associated with T cell dysfunction. J Immunol 2007; 179: 1979–1987.

    Article  CAS  Google Scholar 

  5. Ulsenheimer A, Gerlach JT, Gruener NH, Jung MC, Schirren CA, Schraut W et al. Detection of functionally altered hepatitis C virus-specific CD4 T cells in acute and chronic hepatitis C. Hepatology 2003; 37: 1189–1198.

    Article  Google Scholar 

  6. Urbani S, Amadei B, Tola D, Massari M, Schivazappa S, Missale G et al. PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J Virol 2006; 80: 11398–11403.

    Article  CAS  Google Scholar 

  7. Kasprowicz V, Schulze Zur Wiesch J, Kuntzen T, Nolan BE, Longworth S, Berical A et al. High level of PD-1 expression on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. J Virol 2008; 82: 3154–3160.

    Article  CAS  Google Scholar 

  8. Mumprecht S, Schurch C, Schwaller J, Solenthaler M, Ochsenbein AF . Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood 2009; 114: 1528–1536.

    Article  CAS  Google Scholar 

  9. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009; 114: 1537–1544.

    Article  CAS  Google Scholar 

  10. Klein L, Trautman L, Psarras S, Schnell S, Siermann A, Liblau R et al. Visualizing the course of antigen-specific CD8 and CD4 T cell responses to a growing tumor. Eur J Immunol 2003; 33: 806–814.

    Article  CAS  Google Scholar 

  11. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 2010; 207: 2175–2186.

    Article  CAS  Google Scholar 

  12. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC . Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 2010; 207: 2187–2194.

    Article  CAS  Google Scholar 

  13. Yang ZZ, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ et al. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest 2012; 122: 1271–1282.

    Article  CAS  Google Scholar 

  14. Tesselaar K, Xiao Y, Arens R, van Schijndel GM, Schuurhuis DH, Mebius RE et al. Expression of the murine CD27 ligand CD70 in vitro and in vivo. J Immunol 2003; 170: 33–40.

    Article  CAS  Google Scholar 

  15. van Gisbergen KP, van Olffen RW, van Beek J, van der Sluijs KF, Arens R, Nolte MA et al. Protective CD8 T cell memory is impaired during chronic CD70-driven costimulation. J Immunol 2009; 182: 5352–5362.

    Article  CAS  Google Scholar 

  16. Oelke K, Lu Q, Richardson D, Wu A, Deng C, Hanash S et al. Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis Rheum 2004; 50: 1850–1860.

    Article  CAS  Google Scholar 

  17. Han BK, White AM, Dao KH, Karp DR, Wakeland EK, Davis LS . Increased prevalence of activated CD70+CD4+ T cells in the periphery of patients with systemic lupus erythematosus. Lupus 2005; 14: 598–606.

    Article  CAS  Google Scholar 

  18. Lee WW, Yang ZZ, Li G, Weyand CM, Goronzy JJ . Unchecked CD70 expression on T cells lowers threshold for T cell activation in rheumatoid arthritis. J Immunol 2007; 179: 2609–2615.

    Article  CAS  Google Scholar 

  19. Nolte MA, van Olffen RW, van Gisbergen KP, van Lier RA . Timing and tuning of CD27-CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. Immunol Rev 2009; 229: 216–231.

    Article  CAS  Google Scholar 

  20. Lu Q, Wu A, Richardson BC . Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 2005; 174: 6212–6219.

    Article  CAS  Google Scholar 

  21. Jiang H, Xiao R, Lian X, Kanekura T, Luo Y, Yin Y et al. Demethylation of TNFSF7 contributes to CD70 overexpression in CD4+ T cells from patients with systemic sclerosis. Clin Immunol 2012; 143: 39–44.

    Article  CAS  Google Scholar 

  22. Marie JC, Liggitt D, Rudensky AY . Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 2006; 25: 441–454.

    Article  CAS  Google Scholar 

  23. Li MO, Sanjabi S, Flavell RA . Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 2006; 25: 455–471.

    Article  CAS  Google Scholar 

  24. Yang ZZ, Grote DM, Ziesmer SC, Xiu B, Yates NR, Secreto FJ et al. Soluble and membrane-bound TGF-beta-mediated regulation of intratumoral T cell differentiation and function in B-cell non-Hodgkin lymphoma. PloS One 2013; 8: e59456.

    Article  CAS  Google Scholar 

  25. Tinoco R, Alcalde V, Yang Y, Sauer K, Zuniga EI . Cell-intrinsic transforming growth factor-beta signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity 2009; 31: 145–157.

    Article  CAS  Google Scholar 

  26. Rubtsov YP, Rudensky AY . TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol 2007; 7: 443–453.

    Article  CAS  Google Scholar 

  27. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R et al. Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 1986; 163: 1037–1050.

    Article  CAS  Google Scholar 

  28. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM . Malignant B cells skew the balance of regulatory T cells and TH17 cells in B-cell non-Hodgkin's lymphoma. Cancer Res 2009; 69: 5522–5530.

    Article  CAS  Google Scholar 

  29. Han SH, Yea SS, Jeon YJ, Yang KH, Kaminski NE . Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells. J Pharmacol Exp Ther 1998; 287: 1105–1112.

    CAS  Google Scholar 

  30. McKarns SC, Kaminski NE . TGF-beta 1 differentially regulates IL-2 expression and [3H]-thymidine incorporation in CD3 epsilon mAb- and CD28 mAb-activated splenocytes and thymocytes. Immunopharmacology 2000; 48: 101–115.

    Article  CAS  Google Scholar 

  31. Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 2007; 109: 4368–4375.

    Article  CAS  Google Scholar 

  32. Glass G, Papin JA, Mandell JW . SIMPLE: a sequential immunoperoxidase labeling and erasing method. J Histochem Cytochem 2009; 57: 899–905.

    Article  CAS  Google Scholar 

  33. Huang J, Kerstann KW, Ahmadzadeh M, Li YF, El-Gamil M, Rosenberg SA et al. Modulation by IL-2 of CD70 and CD27 expression on CD8+ T cells: importance for the therapeutic effectiveness of cell transfer immunotherapy. J Immunol 2006; 176: 7726–7735.

    Article  CAS  Google Scholar 

  34. Sung JL, Lin JT, Gorham JD . CD28 co-stimulation regulates the effect of transforming growth factor-beta1 on the proliferation of naive CD4+ T cells. Int Immunopharmacol 2003; 3: 233–245.

    Article  CAS  Google Scholar 

  35. Gunnlaugsdottir B, Maggadottir SM, Ludviksson BR . Anti-CD28-induced co-stimulation and TCR avidity regulates the differential effect of TGF-beta1 on CD4+ and CD8+ naive human T-cells. Int Immunol 2005; 17: 35–44.

    Article  CAS  Google Scholar 

  36. Tesselaar K, Arens R, van Schijndel GM, Baars PA, van der Valk MA, Borst J et al. Lethal T cell immunodeficiency induced by chronic costimulation via CD27-CD70 interactions. Nat Immunol 2003; 4: 49–54.

    Article  CAS  Google Scholar 

  37. Penaloza-MacMaster P, Ur Rasheed A, Iyer SS, Yagita H, Blazar BR, Ahmed R . Opposing effects of CD70 costimulation during acute and chronic lymphocytic choriomeningitis virus infection of mice. J Virol 2011; 85: 6168–6174.

    Article  CAS  Google Scholar 

  38. Arens R, Schepers K, Nolte MA, van Oosterwijk MF, van Lier RA, Schumacher TN et al. Tumor rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8+ T cell formation. J Exp Med 2004; 199: 1595–1605.

    Article  CAS  Google Scholar 

  39. Glouchkova L, Ackermann B, Zibert A, Meisel R, Siepermann M, Janka-Schaub GE et al. The CD70/CD27 pathway is critical for stimulation of an effective cytotoxic T cell response against B cell precursor acute lymphoblastic leukemia. J Immunol 2009; 182: 718–725.

    Article  CAS  Google Scholar 

  40. Couderc B, Zitvogel L, Douin-Echinard V, Djennane L, Tahara H, Favre G et al. Enhancement of antitumor immunity by expression of CD70 (CD27 ligand) or CD154 (CD40 ligand) costimulatory molecules in tumor cells. Cancer Gene Ther 1998; 5: 163–175.

    CAS  Google Scholar 

  41. Lorenz MG, Kantor JA, Schlom J, Hodge JW . Anti-tumor immunity elicited by a recombinant vaccinia virus expressing CD70 (CD27L). Hum Gene Ther 1999; 10: 1095–1103.

    Article  CAS  Google Scholar 

  42. Douin-Echinard V, Bornes S, Rochaix P, Tilkin AF, Peron JM, Bonnet J et al. The expression of CD70 and CD80 by gene-modified tumor cells induces an antitumor response depending on the MHC status. Cancer Gene Ther 2000; 7: 1543–1556.

    Article  CAS  Google Scholar 

  43. Kelly JM, Darcy PK, Markby JL, Godfrey DI, Takeda K, Yagita H et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol 2002; 3: 83–90.

    Article  CAS  Google Scholar 

  44. Cormary C, Gonzalez R, Faye JC, Favre G, Tilkin-Mariame AF . Induction of T-cell antitumor immunity and protection against tumor growth by secretion of soluble human CD70 molecules. Cancer Gene Ther 2004; 11: 497–507.

    Article  CAS  Google Scholar 

  45. Rowley TF, Al-Shamkhani A . Stimulation by soluble CD70 promotes strong primary and secondary CD8+ cytotoxic T cell responses in vivo. J Immunol 2004; 172: 6039–6046.

    Article  CAS  Google Scholar 

  46. Miller J, Eisele G, Tabatabai G, Aulwurm S, von Kurthy G, Stitz L et al. Soluble CD70: a novel immunotherapeutic agent for experimental glioblastoma. J Neurosurg 2010; 113: 280–285.

    Article  CAS  Google Scholar 

  47. Hishima T, Fukayama M, Hayashi Y, Fujii T, Ooba T, Funata N et al. CD70 expression in thymic carcinoma. Am J Surg Pathol 2000; 24: 742–746.

    Article  CAS  Google Scholar 

  48. Wischhusen J, Jung G, Radovanovic I, Beier C, Steinbach JP, Rimner A et al. Identification of CD70-mediated apoptosis of immune effector cells as a novel immune escape pathway of human glioblastoma. Cancer Res 2002; 62: 2592–2599.

    CAS  Google Scholar 

  49. French RR, Taraban VY, Crowther GR, Rowley TF, Gray JC, Johnson PW et al. Eradication of lymphoma by CD8 T cells following anti-CD40 monoclonal antibody therapy is critically dependent on CD27 costimulation. Blood 2007; 109: 4810–4815.

    Article  CAS  Google Scholar 

  50. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM . CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25 T cells. Blood 2007; 110: 2537–2544.

    Article  CAS  Google Scholar 

  51. Claus C, Riether C, Schurch C, Matter MS, Hilmenyuk T, Ochsenbein AF . CD27 signaling increases the frequency of regulatory T cells and promotes tumor growth. Cancer Res 2012; 72: 3664–3676.

    Article  CAS  Google Scholar 

  52. Chahlavi A, Rayman P, Richmond AL, Biswas K, Zhang R, Vogelbaum M et al. Glioblastomas induce T-lymphocyte death by two distinct pathways involving gangliosides and CD70. Cancer Res 2005; 65: 5428–5438.

    Article  CAS  Google Scholar 

  53. Diegmann J, Junker K, Gerstmayer B, Bosio A, Hindermann W, Rosenhahn J et al. Identification of CD70 as a diagnostic biomarker for clear cell renal cell carcinoma by gene expression profiling, real-time RT-PCR and immunohistochemistry. Eur J Cancer 2005; 41: 1794–1801.

    Article  CAS  Google Scholar 

  54. De Colvenaer V, Taveirne S, Hamann J, de Bruin AM, De Smedt M, Taghon T et al. Continuous CD27 triggering in vivo strongly reduces NK cell numbers. Eur J Immunol 2010; 40: 1107–1117.

    Article  CAS  Google Scholar 

  55. Bertrand P, Maingonnat C, Penther D, Guney S, Ruminy P, Picquenot JM et al. The costimulatory molecule CD70 is regulated by distinct molecular mechanisms and is associated with overall survival in diffuse large B-cell lymphoma. Genes Chromosomes Cancer 2013; 52: 764–774.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health (P50 CA97274), the Lymphoma Research Foundation, the Leukemia and Lymphoma Society and the Predolin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z-Z Yang or S M Ansell.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, ZZ., Grote, D., Xiu, B. et al. TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin’s lymphoma. Leukemia 28, 1872–1884 (2014). https://doi.org/10.1038/leu.2014.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.84

This article is cited by

Search

Quick links