Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplastic syndrome

Myelopoiesis dysregulation associated to sustained APRIL production in multiple myeloma-infiltrated bone marrow

Abstract

Multiple myeloma (MM) is a non-curable tumor developing in the bone marrow (BM). The BM microenvironment rich in hematopoietic precursors is suspected to have a role in MM development. Here we show that a proliferation-inducing ligand (APRIL) mediated in vivo MM promotion. In MM-infiltrated BM, APRIL originated from differentiating myeloid cells with an expression peak in precursor cells. Notably, APRIL expression stayed stable in BM despite MM infiltration. The pool of APRIL-producing cells changed upon MM infiltration. Although CD16+ mature myeloid cells constituted about half of the APRIL-producing cells in healthy BM, CD16 Elastase+ myeloid precursor cells were predominant in MM-infiltrated BM. Myeloid precursor cells secreted all the APRIL they produced, and binding of secreted APRIL to MM cells, strictly dependent of heparan sulfate carried by CD138, resulted in an in situ internalization by tumor cells. This indicated APRIL consumption by MM in BM. Taken together, our data show that myelopoiesis dysregulation characterized by an increased proportion of precursor cells occurs in MM patients. Such dysregulation correlates with a stable expression of the MM-promoting factor APRIL in infiltrated BM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mahindra A, Laubach J, Raje N, Munshi N, Richardson PG, Anderson K . Latest advances and current challenges in the treatment of multiple myeloma. Nat Rev Clin Oncol 2012; 9: 135–143.

    Article  CAS  Google Scholar 

  2. Engels B, Rowley DA, Schreiber H . Targeting stroma to treat cancers. Semin Cancer Biol 2012; 22: 41–49.

    Article  CAS  Google Scholar 

  3. Podar K, Chauhan D, Anderson KC . Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 2009; 23: 10–24.

    Article  CAS  Google Scholar 

  4. Hendriks J, Planelles L, de Jong-Odding J, Hardenberg G, Pals ST, Hahne M et al. Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 2005; 12: 637–648.

    Article  CAS  Google Scholar 

  5. Kimberley FC, van Bostelen L, Cameron K, Hardenberg G, Marquart JA, Hahne M et al. The proteoglycan (heparan sulfate proteoglycan) binding domain of APRIL serves as a platform for ligand multimerization and cross-linking. FASEB J 2009; 23: 1584–1595.

    Article  CAS  Google Scholar 

  6. Ingold K, Zumsteg A, Tardivel A, Huard B, Steiner QG, Cachero TG et al. Identification of proteoglycans as the APRIL-specific binding partners. J Exp Med 2005; 201: 1375–1383.

    Article  CAS  Google Scholar 

  7. Schneider P . The role of APRIL and BAFF in lymphocyte activation. Curr Opin Immunol 2005; 17: 282–289.

    Article  CAS  Google Scholar 

  8. He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J et al. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 2007; 26: 812–826.

    Article  CAS  Google Scholar 

  9. Mohr E, Serre K, Manz RA, Cunningham AF, Khan M, Hardie DL et al. Dendritic cells and monocyte/macrophages that create the IL-6/APRIL-rich lymph node microenvironments where plasmablasts mature. J Immunol 2009; 182: 2113–2123.

    Article  CAS  Google Scholar 

  10. Belnoue E, Pihlgren M, McGaha TL, Tougne C, Rochat AF, Bossen C et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 2008; 111: 2755–2764.

    Article  CAS  Google Scholar 

  11. Benson MJ, Dillon SR, Castigli E, Geha RS, Xu S, Lam KP et al. Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol 2008; 180: 3655–3659.

    Article  CAS  Google Scholar 

  12. Chu VT, Frohlich A, Steinhauser G, Scheel T, Roch T, Fillatreau S et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 2011; 12: 151–159.

    Article  CAS  Google Scholar 

  13. Breitkreutz I, Raab MS, Vallet S, Hideshima T, Raje N, Chauhan D et al. Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. Br J Haematol 2007; 139: 55–63.

    Article  CAS  Google Scholar 

  14. Yaccoby S, Pennisi A, Li X, Dillon SR, Zhan F, Barlogie B et al. Atacicept (TACI-Ig) inhibits growth of TACI(high) primary myeloma cells in SCID-hu mice and in coculture with osteoclasts. Leukemia 2008; 22: 406–413.

    Article  CAS  Google Scholar 

  15. Matthes T, Dunand-Sauthier I, Santiago-Raber ML, Krause KH, Donze O, Passweg J et al. Production of the plasma-cell survival factor a proliferation-inducing ligand (APRIL) peaks in myeloid precursor cells from human bone marrow. Blood 2011; 118: 1838–1844.

    Article  CAS  Google Scholar 

  16. Winter O, Moser K, Mohr E, Zotos D, Kaminski H, Szyska M et al. Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood 2010; 116: 1867–1875.

    Article  CAS  Google Scholar 

  17. Moreaux J, Legouffe E, Jourdan E, Quittet P, Reme T, Lugagne C et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004; 103: 3148–3157.

    Article  CAS  Google Scholar 

  18. Moreaux J, Sprynski AC, Dillon SR, Mahtouk K, Jourdan M, Ythier A et al. APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop. Eur J Haematol 2009; 83: 119–129.

    Article  CAS  Google Scholar 

  19. Quinn J, Glassford J, Percy L, Munson P, Marafioti T, Rodriguez-Justo M et al. APRIL promotes cell-cycle progression in primary multiple myeloma cells: influence of D-type cyclin group and translocation status. Blood 2011; 117: 890–901.

    Article  CAS  Google Scholar 

  20. Mackay F, Schneider P, Rennert P, Browning J . BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol 2003; 21: 231–264.

    Article  CAS  Google Scholar 

  21. Neri P, Kumar S, Fulciniti MT, Vallet S, Chhetri S, Mukherjee S et al. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res 2007; 13: 5903–5909.

    Article  CAS  Google Scholar 

  22. Schwaller J, Schneider P, Mhawech-Fauceglia P, McKee T, Myit S, Matthes T et al. Neutrophil-derived APRIL concentrated in tumor lesions by proteoglycans correlates with human B-cell lymphoma aggressiveness. Blood 2007; 109: 331–338.

    Article  CAS  Google Scholar 

  23. Huard B, McKee T, Bosshard C, Durual S, Matthes T, Myit S et al. APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J Clin Invest 2008; 118: 2887–2895.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002; 416: 636–640.

    Article  CAS  Google Scholar 

  25. Moreaux J, Cremer FW, Reme T, Raab M, Mahtouk K, Kaukel P et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005; 106: 1021–1030.

    Article  CAS  Google Scholar 

  26. Dresch C, Faille A, Poirier O, Kadouche J . The cellular composition of the granulocyte series in the normal human bone marrow according to the volume of the sample. J Clin Pathol 1974; 27: 106–108.

    Article  CAS  Google Scholar 

  27. Silvestris F, Ciavarella S, Strippoli S, Dammacco F . Cell fusion and hyperactive osteoclastogenesis in multiple myeloma. Adv Exp Med Biol 2011; 714: 113–128.

    Article  CAS  Google Scholar 

  28. Terstappen LW, Safford M, Loken MR . Flow cytometric analysis of human bone marrow. III. Neutrophil maturation. Leukemia 1990; 4: 657–663.

    CAS  PubMed  Google Scholar 

  29. Borregaard N, Theilgaard-Monch K, Sorensen OE, Cowland JB . Regulation of human neutrophil granule protein expression. Curr Opin Hematol 2001; 8: 23–27.

    Article  CAS  Google Scholar 

  30. Kokenyesi R, Bernfield M . Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1. J Biol Chem 1994; 269: 12304–12309.

    CAS  PubMed  Google Scholar 

  31. Bret C, Hose D, Reme T, Sprynski AC, Mahtouk K, Schved JF et al. Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells. Br J Haematol 2009; 145: 350–368.

    Article  CAS  Google Scholar 

  32. van den Born J, Salmivirta K, Henttinen T, Ostman N, Ishimaru T, Miyaura S et al. Novel heparan sulfate structures revealed by monoclonal antibodies. J Biol Chem 2005; 280: 20516–20523.

    Article  CAS  Google Scholar 

  33. David G, Bai XM, Van der Schueren B, Cassiman JJ, Van den Berghe H . Developmental changes in heparan sulfate expression: in situ detection with mAbs. J Cell Biol 1992; 119: 961–975.

    Article  CAS  Google Scholar 

  34. Hofgaard PO, Jodal HC, Bommert K, Huard B, Caers J, Carlsen H et al. A novel mouse model for multiple myeloma (MOPC315.BM) that allows noninvasive spatiotemporal detection of osteolytic disease. PLoS One 2012; 7: e51892.

    Article  CAS  Google Scholar 

  35. Lemancewicz D, Bolkun L, Jablonska E, Kulczynska A, Bolkun-Skornicka U, Kloczko J et al. Evaluation of TNF superfamily molecules in multiple myeloma patients: correlation with biological and clinical features. Leuk Res 2013; 37: 1089–1093.

    Article  CAS  Google Scholar 

  36. Rossi JF . Phase I study of atacicept in relapsed/refractory multiple myeloma (MM) and Waldenstrom's macroglobulinemia. Clin Lymphoma Myeloma Leuk 2011; 11: 136–138.

    Article  CAS  Google Scholar 

  37. Augustson BM, Begum G, Dunn JA, Barth NJ, Davies F, Morgan G et al. Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United kingdom Medical Research Council trials between 1980 and 2002—Medical Research Council Adult Leukaemia Working Party. J Clin Oncol 2005; 23: 9219–9226.

    Article  Google Scholar 

  38. Mathiot C, Teillaud JL, Elmalek M, Mosseri V, Euller-Ziegler L, Daragon A et al. Correlation between soluble serum CD16 (sCD16) levels and disease stage in patients with multiple myeloma. J Clin Immunol 1993; 13: 41–48.

    Article  CAS  Google Scholar 

  39. Moldovan I, Galon J, Maridonneau-Parini I, Roman Roman S, Mathiot C, Fridman WH et al. Regulation of production of soluble Fc gamma receptors type III in normal and pathological conditions. Immunol Lett 1999; 68: 125–134.

    Article  CAS  Google Scholar 

  40. Barlogie B, Tricot G, Haessler J, van Rhee F, Cottler-Fox M, Anaissie E et al. Cytogenetically defined myelodysplasia after melphalan-based autotransplantation for multiple myeloma linked to poor hematopoietic stem-cell mobilization: the Arkansas experience in more than 3,000 patients treated since 1989. Blood 2008; 111: 94–100.

    Article  CAS  Google Scholar 

  41. Mailankody S, Pfeiffer RM, Kristinsson SY, Korde N, Bjorkholm M, Goldin LR et al. Risk of acute myeloid leukemia and myelodysplastic syndromes after multiple myeloma and its precursor disease (MGUS). Blood 2011; 118: 4086–4092.

    Article  CAS  Google Scholar 

  42. Roeker LE, Larson DR, Kyle RA, Kumar S, Dispenzieri A, Rajkumar SV . Risk of acute leukemia and myelodysplastic syndromes in patients with monoclonal gammopathy of undetermined significance (MGUS): a population-based study of 17 315 patients. Leukemia 2013; 27: 1391–1393.

    Article  CAS  Google Scholar 

  43. Westers TM, Ireland R, Kern W, Alhan C, Balleisen JS, Bettelheim P et al. Standardization of flow cytometry in myelodysplastic syndromes: a report from an international consortium and the European LeukemiaNet Working Group. Leukemia 2012; 26: 1730–1741.

    Article  CAS  Google Scholar 

  44. Matarraz S, Paiva B, Diez-Campelo M, Lopez-Corral L, Perez E, Mateos MV et al. Myelodysplasia-associated immunophenotypic alterations of bone marrow cells in myeloma: are they present at diagnosis or are they induced by lenalidomide? Haematologica 2012; 97: 1608–1611.

    Article  CAS  Google Scholar 

  45. Matarraz S, Paiva B, Diez-Campelo M, Barrena S, Jara-Acevedo M, Gutierrez ML et al. Immunophenotypic alterations of bone marrow myeloid cell compartments in multiple myeloma patients predict for myelodysplasia-associated cytogenetic alterations. Leukemia 2014; 28: 1747–1750.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Henri Dubois Ferrière/Dinu Lipatti Foundation, the Swiss National Science Foundation, the Leenaards Foundation, the Swiss Cancer League, the Jacques and Gloria Gossweiller stiftung, the INSERM and the University Joseph Fourier. We thank Patrice Marche for its critical reading of the manuscript.

Author Contributions

IDS, BM and BH performed the experiments. TM, JP, TMK, SP and BH provided reagents and/or analyzed the data. TM and BH wrote the manuscript. BH designed the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Huard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthes, T., McKee, T., Dunand-Sauthier, I. et al. Myelopoiesis dysregulation associated to sustained APRIL production in multiple myeloma-infiltrated bone marrow. Leukemia 29, 1901–1908 (2015). https://doi.org/10.1038/leu.2015.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.68

This article is cited by

Search

Quick links