Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

Ibrutinib modulates the immunosuppressive CLL microenvironment through STAT3-mediated suppression of regulatory B-cell function and inhibition of the PD-1/PD-L1 pathway

Abstract

Ibrutinib, a covalent inhibitor of Bruton Tyrosine Kinase (BTK), is approved for treatment of patients with relapsed/refractory or treatment-naïve chronic lymphocytic leukemia (CLL). Besides directly inhibiting BTK, ibrutinib possesses immunomodulatory properties through targeting multiple signaling pathways. Understanding how this ancillary property of ibrutinib modifies the CLL microenvironment is crucial for further exploration of immune responses in this disease and devising future combination therapies. Here, we investigated the mechanisms underlying the immunomodulatory properties of ibrutinib. In peripheral blood samples collected prospectively from CLL patients treated with ibrutinib monotherapy, we observed selective and durable downregulation of PD-L1 on CLL cells by 3 months post-treatment. Further analysis showed that this effect was mediated through inhibition of the constitutively active signal transducer and activator of transcription 3 (STAT3) in CLL cells. Similar downregulation of PD-1 was observed in CD4+ and CD8+ T cells. We also demonstrated reduced interleukin (IL)-10 production by CLL cells in patients receiving ibrutinib, which was also linked to suppression of STAT3 phosphorylation. Taken together, these findings provide a mechanistic basis for immunomodulation by ibrutinib through inhibition of the STAT3 pathway, critical in inducing and sustaining tumor immune tolerance. The data also merit testing of combination treatments combining ibrutinib with agents capable of augmenting its immunomodulatory effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Prieto A, Garcia-Suarez J, Reyes E, Lapena P, Hernandez M, Alvarez-Mon M . Diminished DNA synthesis in T cells from B chronic lymphocytic leukemia after phytohemagglutinin, anti-CD3, and phorbol myristate acetate mitogenic signals. Exp Hematol 1993; 21: 1563–1569.

    CAS  PubMed  Google Scholar 

  2. Chiorazzi N, Fu SM, Montazeri G, Kunkel HG, Rai K, Gee T . T cell helper defect in patients with chronic lymphocytic leukemia. J Immunol 1979; 122: 1087–1090.

    CAS  PubMed  Google Scholar 

  3. Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 2008; 118: 2427–2437.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. D'Arena G, D'Auria F, Simeon V, Laurenti L, Deaglio S, Mansueto G et al. A shorter time to the first treatment may be predicted by the absolute number of regulatory T-cells in patients with Rai stage 0 chronic lymphocytic leukemia. Am J Hematol 2012; 87: 628–631.

    Article  PubMed  Google Scholar 

  5. Weiss L, Melchardt T, Egle A, Grabmer C, Greil R, Tinhofer I . Regulatory T cells predict the time to initial treatment in early stage chronic lymphocytic leukemia. Cancer 2011; 117: 2163–2169.

    Article  CAS  PubMed  Google Scholar 

  6. Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 2013; 121: 1612–1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brusa D, Serra S, Coscia M, Rossi D, D'Arena G, Laurenti L et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica 2013; 98: 953–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 2010; 32: 129–140.

    Article  CAS  PubMed  Google Scholar 

  9. Khoder A, Sarvaria A, Alsuliman A, Chew C, Sekine T, Cooper N et al. Regulatory B cells are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in chronic GVHD. Blood 2014; 124: 2034–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DiLillo DJ, Weinberg JB, Yoshizaki A, Horikawa M, Bryant JM, Iwata Y et al. Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function. Leukemia 2013; 27: 170–182.

    Article  CAS  PubMed  Google Scholar 

  11. Saulep-Easton D, Vincent FB, Quah PS, Wei A, Ting SB, Croce CM et al. The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells. Leukemia 2016; 30: 163–172.

    Article  CAS  PubMed  Google Scholar 

  12. Ramsay AG, Clear AJ, Fatah R, Gribben JG . Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood 2012; 120: 1412–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strati P, Shanafelt TD . Monoclonal B-cell lymphocytosis and early-stage chronic lymphocytic leukemia: diagnosis, natural history, and risk stratification. Blood 2015; 126: 454–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moreira J, Rabe KG, Cerhan JR, Kay NE, Wilson JW, Call TG et al. Infectious complications among individuals with clinical monoclonal B-cell lymphocytosis (MBL): a cohort study of newly diagnosed cases compared to controls. Leukemia 2013; 27: 136–141.

    Article  CAS  PubMed  Google Scholar 

  15. Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med 2015; 373: 2425–2437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Byrd JC, Brown JR, O'Brien S, Barrientos JC, Kay NE, Reddy NM et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med 2014; 371: 213–223.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Byrd JC, Furman RR, Coutre SE, Burger JA, Blum KA, Coleman M et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood 2015; 125: 2497–2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O'Brien S, Furman RR, Coutre SE, Sharman JP, Burger JA, Blum KA et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol 2014; 15: 48–58.

    Article  CAS  PubMed  Google Scholar 

  20. Woyach JA, Johnson AJ, Byrd JC . The B-cell receptor signaling pathway as a therapeutic target in CLL. Blood 2012; 120: 1175–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qiu Y, Kung HJ . Signaling network of the Btk family kinases. Oncogene 2000; 19: 5651–5661.

    Article  CAS  PubMed  Google Scholar 

  22. Lin TS, Mahajan S, Frank DA . STAT signaling in the pathogenesis and treatment of leukemias. Oncogene 2000; 19: 2496–2504.

    Article  CAS  PubMed  Google Scholar 

  23. Hazan-Halevy I, Harris D, Liu Z, Liu J, Li P, Chen X et al. STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. Blood 2010; 115: 2852–2863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu H, Pardoll D, Jove R . STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9: 798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng F, Wang HW, Cuenca A, Huang M, Ghansah T, Brayer J et al. A critical role for Stat3 signaling in immune tolerance. Immunity 2003; 19: 425–436.

    Article  CAS  PubMed  Google Scholar 

  26. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA 2010; 107: 13075–13080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rozovski U, Wu JY, Harris DM, Liu Z, Li P, Hazan-Halevy I et al. Stimulation of the B-cell receptor activates the JAK2/STAT3 signaling pathway in chronic lymphocytic leukemia cells. Blood 2014; 123: 3797–3802v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim E, Hurtz C, Koehrer S, Wang Z, Balasubramanian S, Chang BY et al. Ibrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. Blood 2016; 129: 1155–1165.

    Article  PubMed  Google Scholar 

  29. Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell 2015; 162: 1242–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA 2008; 105: 20852–20857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wolfle SJ, Strebovsky J, Bartz H, Sahr A, Arnold C, Kaiser C et al. PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol 2011; 41: 413–424.

    Article  PubMed  Google Scholar 

  32. Zhang N, Zeng Y, Du W, Zhu J, Shen D, Liu Z et al. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol 2016; 49: 1360–1368.

    Article  CAS  PubMed  Google Scholar 

  33. Wang JD, Chen XY, Ji KW, Tao F . Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth. Am J Transl Res 2016; 8: 3003–3012.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ezell SA, Mayo M, Bihani T, Tepsuporn S, Wang S, Passino M et al. Synergistic induction of apoptosis by combination of BTK and dual mTORC1/2 inhibitors in diffuse large B cell lymphoma. Oncotarget 2014; 5: 4990–5001.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zucha MA, Wu AT, Lee WH, Wang LS, Lin WW, Yuan CC et al. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget 2015; 6: 13255–13268.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ishdorj G, Johnston JB, Gibson SB . Inhibition of constitutive activation of STAT3 by curcurbitacin-I (JSI-124) sensitized human B-leukemia cells to apoptosis. Mol Cancer Ther 2010; 9: 3302–3314.

    Article  CAS  PubMed  Google Scholar 

  37. Blaskovich MA, Sun J, Cantor A, Turkson J, Jove R, Sebti SM . Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 2003; 63: 1270–1279.

    CAS  PubMed  Google Scholar 

  38. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK . Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002; 16: 219–230.

    Article  CAS  PubMed  Google Scholar 

  39. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011; 117: 6287–6296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun C, Tian X, Lee YS, Gunti S, Lipsky A, Herman SE et al. Partial reconstitution of humoral immunity and fewer infections in patients with chronic lymphocytic leukemia treated with ibrutinib. Blood 2015; 126: 2213–2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S, Zhong Y et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood 2013; 122: 2539–2549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Topalian SL, Drake CG, Pardoll DM . Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 2012; 24: 207–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pardoll DM . The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Norde WJ, Hobo W, van der Voort R, Dolstra H . Coinhibitory molecules in hematologic malignancies: targets for therapeutic intervention. Blood 2012; 120: 728–736.

    Article  CAS  PubMed  Google Scholar 

  45. Frank DA, Mahajan S, Ritz J . B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest 1997; 100: 3140–3148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu H, Lee H, Herrmann A, Buettner R, Jove R . Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 2014; 14: 736–746.

    Article  CAS  PubMed  Google Scholar 

  47. Hossain DM, Dos Santos C, Zhang Q, Kozlowska A, Liu H, Gao C et al. Leukemia cell-targeted STAT3 silencing and TLR9 triggering generate systemic antitumor immunity. Blood 2014; 123: 15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Akinleye A, Chen Y, Mukhi N, Song Y, Liu D . Ibrutinib and novel BTK inhibitors in clinical development. J Hematol Oncol 2013; 6: 59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Decker T, Kovarik P . Serine phosphorylation of STATs. Oncogene 2000; 19: 2628–2637.

    Article  CAS  PubMed  Google Scholar 

  50. Fraietta JA, Beckwith KA, Patel PR, Ruella M, Zheng Z, Barrett DM et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 2016; 127: 1117–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wei F, Zhong S, Ma Z, Kong H, Medvec A, Ahmed R et al. Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci USA 2013; 110: E2480–E2489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gorgun G, Ramsay AG, Holderried TA, Zahrieh D, Le Dieu R, Liu F et al. E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci USA 2009; 106: 6250–6255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yan XJ, Albesiano E, Zanesi N, Yancopoulos S, Sawyer A, Romano E et al. B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2006; 103: 11713–11718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnson AJ, Lucas DM, Muthusamy N, Smith LL, Edwards RB, De Lay MD et al. Characterization of the TCL-1 transgenic mouse as a preclinical drug development tool for human chronic lymphocytic leukemia. Blood 2006; 108: 1334–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011; 117: 530–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF . A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008; 28: 639–650.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by CLL Moonshot, the CLL Global Foundation and by a research grant from Pharmacyclics. This work was supported in part by the National Institutes of Health (PO1-CA81534) of the CLL Research Consortium. The flow studies were performed in the Flow Cytometry & Cellular Imaging Facility, which is supported in part by the National Institutes of Health through MD Anderson's Cancer Center Support Grant CA016672.

Author contribution

KK and HS performed experiments, designed, interpreted, analyzed and wrote the manuscript. DH and EK assisted with experiments and commented on the manuscript. PAT analyzed data and wrote the manuscript. JAB, ZE, MK, MM, NI, AA, WW, NJ, EL and EJS provided advice on experiments and commented on the manuscript. KR designed and directed the study and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Rezvani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondo, K., Shaim, H., Thompson, P. et al. Ibrutinib modulates the immunosuppressive CLL microenvironment through STAT3-mediated suppression of regulatory B-cell function and inhibition of the PD-1/PD-L1 pathway. Leukemia 32, 960–970 (2018). https://doi.org/10.1038/leu.2017.304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.304

This article is cited by

Search

Quick links