Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum

Abstract

The ability of killer T cells carrying the CD8 antigen to detect tumours or intracellular pathogens requires an extensive display of antigenic peptides by major histocompatibility complex (MHC) class I molecules on the surface of potential target cells1. These peptides are derived from almost all intracellular proteins and reveal the presence of foreign pathogens and mutations. How cells produce thousands of distinct peptides cleaved to the precise lengths required for binding different MHC class I molecules remains unknown2,3. The peptides are cleaved from endogenously synthesized proteins by the proteasome in the cytoplasm4,5 and then trimmed by an unknown aminopeptidase in the endoplasmic reticulum (ER)6,7,8. Here we identify ERAAP, the aminopeptidase associated with antigen processing in the ER. ERAAP has a broad substrate specificity, and its expression is strongly upregulated by interferon-γ. Reducing the expression of ERAAP through RNA interference prevents the trimming of peptides for MHC class I molecules in the ER and greatly reduces the expression of MHC class I molecules on the cell surface. Thus, ERAAP is the missing link between the products of cytosolic processing and the final peptides presented by MHC class I molecules on the cell surface.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification and identification of ERAAP.
Figure 2: ERAAP is located in the ER and its tissue distribution correlates with that of MHC class I molecules.
Figure 3: Reduction in ERAAP expression by RNAi affects antigen presentation.
Figure 4: ERAAP is required for trimming peptides in the ER.

Similar content being viewed by others

References

  1. Shastri, N., Schwab, S. & Serwold, T. Producing nature's gene-chips. The generation of peptides for display by MHC class I molecules. Annu. Rev. Immunol. 20, 463–493 (2002)

    Article  CAS  Google Scholar 

  2. Falk, K., Rötzschke, O. & Rammensee, H. G. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 348, 248–251 (1990)

    Article  ADS  CAS  Google Scholar 

  3. Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. & Rammensee, H.-G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991)

    Article  ADS  CAS  Google Scholar 

  4. Rock, K. L. & Goldberg, A. L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 17, 739–779 (1999)

    Article  CAS  Google Scholar 

  5. Kloetzel, P.-M. Antigen processing by the proteasome. Nature Rev. Mol. Cell Biol. 2, 179–187 (2001)

    Article  CAS  Google Scholar 

  6. Serwold, T., Gaw, S. & Shastri, N. ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nature Immunol. 2, 644–651 (2001)

    Article  CAS  Google Scholar 

  7. Brouwenstijn, N., Serwold, T. & Shastri, N. MHC class I molecules can direct proteolytic cleavage of antigenic precursors in the endoplasmic reticulum. Immunity 15, 95–104 (2001)

    Article  CAS  Google Scholar 

  8. Fruci, D., Niedermann, G., Butler, R. H. & van Endert, P. M. Efficient MHC Class I-independent amino-terminal trimming of epitope precursor peptides in the endoplasmic reticulum. Immunity 15, 467–476 (2001)

    Article  CAS  Google Scholar 

  9. Hellman, U., Wernstedt, C., Gonez, J. & Heldin, C. H. Improvement of an ‘In-Gel’ digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 224, 451–455 (1995)

    Article  CAS  Google Scholar 

  10. Clauser, K. R., Baker, P. & Burlingame, A. L. Role of accurate mass measurement (± 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71, 2871–2882 (1999)

    Article  CAS  Google Scholar 

  11. Helen, I. & Field, E. D. RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database. Proteomics 2, 36–47 (2001)

    Google Scholar 

  12. Hattori, A., Matsumoto, H., Mizutani, S. & Tsujimoto, M. Molecular cloning of adipocyte-derived leucine aminopeptidase highly related to placental leucine aminopeptidase/oxytocinase. J. Biochem. (Tokyo) 125, 931–938 (1999)

    Article  CAS  Google Scholar 

  13. Medzihradszky, K. F. et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 72, 552–558 (2000)

    Article  CAS  Google Scholar 

  14. Schomburg, L., Kollmus, H., Friedrichsen, S. & Bauer, K. Molecular characterization of a puromycin-insensitive leucyl-specific aminopeptidase, PILS-AP. Eur. J. Biochem. 267, 3198–3207 (2000)

    Article  CAS  Google Scholar 

  15. Miyashita, H. et al. A mouse orthologue of puromycin-insensitive leucyl-specific aminopeptidase is expressed in endothelial cells and plays an important role in angiogenesis. Blood 99, 3241–3249 (2002)

    Article  CAS  Google Scholar 

  16. Rawlings, N. D., O'Brien, E. A. & Barrett, A. J. MEROPS: the protease database. Nucleic Acids Res. 30, 343–346 (2002)

    Article  CAS  Google Scholar 

  17. Boehm, U., Klamp, T., Groot, M. & Howard, J. C. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15, 749–795 (1997)

    Article  CAS  Google Scholar 

  18. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Fehling, H. J. et al. MHC class I expression in mice lacking the proteasome subunit LMP-7. Science 265, 1234–1237 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Preckel, T. et al. Impaired immunoproteasome assembly and immune responses in PA28-/- mice. Science 286, 2162–2165 (1999)

    Article  CAS  Google Scholar 

  21. Anderson, K. et al. Endogenously synthesized peptide with an endoplasmic reticulum signal sequence sensitizes antigen processing mutant cells to class I-restricted cell-mediated lysis. J. Exp. Med. 174, 489–492 (1991)

    Article  CAS  Google Scholar 

  22. Paz, P., Brouwenstijn, N., Perry, R. & Shastri, N. Discrete proteolytic intermediates in the MHC class I antigen processing pathway and MHC I-dependent peptide trimming in the ER. Immunity 11, 241–251 (1999)

    Article  CAS  Google Scholar 

  23. Shastri, N. & Gonzalez, F. Endogenous generation and presentation of the OVA peptide/Kb complex to T-cells. J. Immunol. 150, 2724–2736 (1993)

    CAS  PubMed  Google Scholar 

  24. Cascio, P., Hilton, C., Kisselev, A. F., Rock, K. L. & Goldberg, A. L. 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J. V20, 2357–2366 (2001)

    Article  Google Scholar 

  25. Toes, R. E. M. et al. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 194, 1–12 (2001)

    Article  CAS  Google Scholar 

  26. Egen, J. G. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16, 23–35 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Egen for help with fluorescence microscopy; D. King for peptide synthesis; and S. Schwab for comments. This work was supported by grants to N.S. from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilabh Shastri.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serwold, T., Gonzalez, F., Kim, J. et al. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002). https://doi.org/10.1038/nature01074

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01074

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing