Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1

An Addendum to this article was published on 26 June 2003

Abstract

The evolutionary conservation of T lymphocyte subsets bearing T-cell receptors (TCRs) using invariant α-chains is indicative of unique functions. CD1d-restricted natural killer T (NK-T) cells that express an invariant Vα14 TCRα chain have been implicated in microbial and tumour responses, as well as in auto-immunity1,2. Here we show that T cells that express the canonical hVα7.2-Jα33 or mVα19-Jα33 TCR rearrangement3 are preferentially located in the gut lamina propria of humans and mice, respectively, and are therefore genuine mucosal-associated invariant T (MAIT) cells. Selection and/or expansion of this population requires B lymphocytes, as MAIT cells are absent in B-cell-deficient patients and mice. In addition, we show that MAIT cells are selected and/or restricted by MR1, a monomorphic major histocompatibility complex class I-related molecule that is markedly conserved in diverse mammalian species4. MAIT cells are not present in germ-free mice, indicating that commensal flora is required for their expansion in the gut lamina propria. This indicates that MAIT cells are probably involved in the host response at the site of pathogen entry, and may regulate intestinal B-cell activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MAIT cells are located in the gut lamina propria of both humans and mice.
Figure 2: MAIT cells are selected by B cells.
Figure 3: MR1 is the restricting MHC molecule for MAIT cells.
Figure 4: MAIT cells are absent in germ-free mice.

References

  1. Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nature Rev. Immunol. 2, 557–568 (2002)

    Article  CAS  Google Scholar 

  3. Tilloy, F. et al. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Riegert, P., Wanner, V. & Bahram, S. Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene. J. Immunol. 161, 4066–4077 (1998)

    CAS  PubMed  Google Scholar 

  5. Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185 (1993)

    Article  CAS  PubMed  Google Scholar 

  6. Arstila, T. et al. Identical T cell clones are located within the mouse gut epithelium and lamina propia and circulate in the thoracic duct lymph. J. Exp. Med. 191, 823–834 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tourne, S. et al. Biosynthesis of major histocompatibility complex molecules and generation of T cells in Ii TAP1 double-mutant mice. Proc. Natl Acad. Sci. USA 93, 1464–1469 (1996)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bix, M. & Raulet, D. Inefficient positive selection of T cells directed by haematopoietic cells. Nature 359, 330–333 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. Urdahl, K. B., Sun, J. C. & Bevan, M. J. Positive selection of MHC class Ib-restricted CD8+ T cells on hematopoietic cells. Nature Immunol. 3, 772–779 (2002)

    Article  CAS  Google Scholar 

  11. Jakobovits, A. et al. Analysis of homozygous mutant chimeric mice: deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production. Proc. Natl Acad. Sci. USA 90, 2551–2555 (1993)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin µ chain gene. Nature 350, 423–426 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Macpherson, A. J. et al. IgA production without µ or δ chain expression in developing B cells. Nature Immunol. 2, 625–631 (2001)

    Article  CAS  Google Scholar 

  14. Berland, R. & Wortis, H. H. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol. 20, 253–300 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. Tsukada, S., Rawlings, D. J. & Witte, O. N. Role of Bruton's tyrosine kinase in immunodeficiency. Curr. Opin. Immunol. 6, 623–630 (1994)

    Article  CAS  PubMed  Google Scholar 

  16. Maenaka, K. & Jones, E. Y. MHC superfamily structure and the immune system. Curr. Opin. Struct. Biol. 9, 745–753 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. Ugolini, S. & Vivier, E. Multifaceted roles of MHC class I and MHC class I-like molecules in T cell activation. Nature Immunol. 2, 198–200 (2001)

    Article  CAS  Google Scholar 

  18. Bahram, S. MIC genes: from genetics to biology. Adv. Immunol. 76, 1–60 (2000)

    CAS  PubMed  Google Scholar 

  19. Hashimoto, K., Hirai, M. & Kurosawa, Y. A gene outside the human MHC related to classical HLA class I genes. Science 269, 693–695 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Gu, H., Forster, I. & Rajewsky, K. Sequence homologies, N sequence insertion and JH gene utilization in VHDJH joining: implications for the joining mechanism and the ontogenetic timing of Ly1 B cell and B-CLL progenitor generation. EMBO J. 9, 2133–2140 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Itohara, S. et al. T cell receptor δ gene mutant mice: independent generation of αβ T cells and programmed rearrangements of γδ TCR genes. Cell 72, 337–348 (1993)

    Article  CAS  PubMed  Google Scholar 

  22. Asarnow, D. M., Cado, D. & Raulet, D. H. Selection is not required to produce invariant T-cell receptor γ-gene junctional sequences. Nature 362, 158–160 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Mallick-Wood, C. A. et al. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science 279, 1729–1733 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Park, S. H., Benlagha, K., Lee, D., Balish, E. & Bendelac, A. Unaltered phenotype, tissue distribution and function of Vα14+ NKT cells in germ-free mice. Eur. J. Immunol. 30, 620–625 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl Acad. Sci. USA 93, 12445–12450 (1996)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, C. R. et al. Nonclassical binding of formylated peptide in crystal structure of the MHC class Ib molecule H2-M3. Cell 82, 655–664 (1995)

    Article  CAS  PubMed  Google Scholar 

  27. Lee, N., Goodlett, D. R., Ishitani, A., Marquardt, H. & Geraghty, D. E. HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J. Immunol. 160, 4951–4960 (1998)

    CAS  PubMed  Google Scholar 

  28. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Benveniste, J., Lespinats, G. & Salomon, J. Serum and secretory IgA in axenic and holoxenic mice. J. Immunol. 107, 1656–1662 (1971)

    CAS  PubMed  Google Scholar 

  30. Jameson, J. et al. A role for skin γδ cells in wound repair. Science 296, 747–749 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Laigneau, N. Froux, M. Garcia, F. Valette and I. Cissé for managing the mouse colonies in Paris, E. Wagner and colleagues for animal care at the Basel Institute for Immunology, C. DeSouza for help in the membrane biotinylation, Z. Maciorowski for cell sorting, and S. Kuschert and A. Dierich for blastocyst injection. We thank F. Ledeist for patient blood samples, N. Brousse and F. Geissman for human biopsies, P. A. Cazenave's group for xid and JH knockout mice, and K. Rajewsky for the Cre transgenic mice. We thank M. Bonneville, S. Amigorena, C. Thery, P. Benaroch, M. Colonna, D. Freemont and T. Hansen for discussions and for reviewing the manuscript. This work was supported by grants from the Association de la Recherche Contre la Cancer, Fondation pour la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale and Section Médicale de l'Institut Curie. S.G. thanks Hoffmann la Roche for supporting the Basel Institute for Immunology and M. Colonna for support in St Louis.Authors' contributions S. Gilfillan and O. Lantz share senior authorship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susan Gilfillan or Olivier Lantz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treiner, E., Duban, L., Bahram, S. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003). https://doi.org/10.1038/nature01433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01433

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing