Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Melanoma biology and new targeted therapy

Abstract

Melanoma is a cancer that arises from melanocytes, specialized pigmented cells that are found predominantly in the skin. The incidence of melanoma is rising steadily in western populations — the number of cases worldwide has doubled in the past 20 years. In its early stages malignant melanoma can be cured by surgical resection, but once it has progressed to the metastatic stage it is extremely difficult to treat and does not respond to current therapies. Recent discoveries in cell signalling have provided greater understanding of the biology that underlies melanoma, and these advances are being exploited to provide targeted drugs and new therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progression of melanocyte transformation.
Figure 2: Melanoma drugs and their target pathways.
Figure 3: Model of MITF regulation in melanoma.

Similar content being viewed by others

References

  1. Slominski, A., Tobin, D. J., Shibahara, S. & Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84, 1155–1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Boissy, R. E. & Nordlund, J. J. Molecular basis of congenital hypopigmentary disorders in humans: a review. Pigment Cell Res. 10, 12–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Cummins, D. L. et al. Cutaneous malignant melanoma. Mayo Clin. Proc. 81, 500–507 (2006).

    Article  PubMed  Google Scholar 

  4. Haass, N. K., Smalley, K. S. & Herlyn, M. The role of altered cell–cell communication in melanoma progression. J. Mol. Histol. 35, 309–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Miller, A. J. & Mihm, M. C. Melanoma. N. Engl. J. Med. 355, 51–65 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Clark, W. H. et al. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum. Pathol. 15, 1147–1165 (1984).

    Article  PubMed  Google Scholar 

  7. Kuchelmeister, C., Schaumburg-Lever, G. & Garbe, C. Acral cutaneous melanoma in caucasians: clinical features, histopathology and prognosis in 112 patients. Br. J. Dermatol. 143, 275–280 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Ishihara, K., Saida, T. & Yamamoto, A. Updated statistical data for malignant melanoma in Japan. Int. J. Clin. Oncol. 6, 109–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Gilchrest, B. A., Eller, M. S., Geller, A. C. & Yaar, M. The pathogenesis of melanoma induced by ultraviolet radiation. N. Engl. J. Med. 340, 1341–1348 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Curtin, J. A. et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135–2147 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nature Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  Google Scholar 

  12. Bohm, M. et al. Identification of p90RSK as the probable CREB-Ser133 kinase in human melanocytes. Cell Growth Differ. 6, 291–302 (1995).

    CAS  PubMed  Google Scholar 

  13. Wellbrock, C., Weisser, C., Geissinger, E., Troppmair, J. & Schartl, M. Activation of p59Fyn leads to melanocyte dedifferentiation by influencing MKP-1-regulated mitogen-activated protein kinase signaling. J. Biol. Chem. 277, 6443–6454 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Cohen, C. et al. Mitogen-actived protein kinase activation is an early event in melanoma progression. Clin. Cancer Res. 8, 3728–3733 (2002).

    CAS  PubMed  Google Scholar 

  15. Satyamoorthy, K. et al. Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res. 63, 756–759 (2003).

    CAS  PubMed  Google Scholar 

  16. Willmore-Payne, C., Holden, J. A., Tripp, S. & Layfield, L. J. Human malignant melanoma: detection of BRAF- and c-kit-activating mutations by high-resolution amplicon melting analysis. Hum. Pathol. 36, 486–493 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Ackermann, J. et al. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res. 65, 4005–4011 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Gray-Schopfer, V. C., da Rocha Dias, S. & Marais, R. The role of B-RAF in melanoma. Cancer Metastasis Rev. 24, 165–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Sharma, A. et al. Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res. 65, 2412–2421 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Wellbrock, C. & Marais, R. Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J. Cell Biol. 170, 703–708 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goodall, J. et al. The Brn-2 transcription factor links activated BRAF to melanoma proliferation. Mol. Cell Biol. 24, 2923–2931 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhatt, K. V. et al. Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF–MEK–ERK signaling. Oncogene 24, 3459–3471 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Gray-Schopfer, V. C. et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br. J. Cancer 95, 496–505 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Huntington, J. T. et al. Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J. Biol. Chem. 279, 33168–33176 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Ellerhorst, J. A. et al. Regulation of iNOS by the p44/42 mitogen-activated protein kinase pathway in human melanoma. Oncogene 25, 3956–3962 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Omholt, K., Krockel, D., Ringborg, U. & Hansson, J. Mutations of PIK3CA are rare in cutaneous melanoma. Melanoma Res. 16, 197–200 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Wu, H., Goel, V. & Haluska, F. G. PTEN signaling pathways in melanoma. Oncogene 22, 3113–3122 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Stahl, J. M. et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 64, 7002–7010 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Smalley, K. S. et al. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol. Cancer Ther. 5, 1136–1144 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Tsao, H., Goel, V., Wu, H., Yang, G. & Haluska, F. G. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol. 122, 337–341 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wellbrock, C. et al. V599EB-RAF is an oncogene in melanocytes. Cancer Res. 64, 2338–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Levy, C., Khaled, M. & Fisher, D. E. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 12, 406–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Selzer, E. et al. The melanocyte-specific isoform of the microphthalmia transcription factor affects the phenotype of human melanoma. Cancer Res. 62, 2098–2103 (2002).

    CAS  PubMed  Google Scholar 

  38. Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Wu, M. et al. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14, 301–312 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takeda, K. et al. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J. Biol. Chem. 275, 14013–14016 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Omholt, K., Platz, A., Ringborg, U. & Hansson, J. Cytoplasmic and nuclear accumulation of β-catenin is rarely caused by CTNNB1 exon 3 mutations in cutaneous malignant melanoma. Int. J. Cancer 92, 839–842 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Rimm, D. L., Caca, K., Hu, G., Harrison, F. B. & Fearon, E. R. Frequent nuclear/cytoplasmic localization of β-catenin without exon 3 mutations in malignant melanoma. Am. J. Pathol. 154, 325–329 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Worm, J., Christensen, C., Gronbaek, K., Tulchinsky, E. & Guldberg, P. Genetic and epigenetic alterations of the APC gene in malignant melanoma. Oncogene 23, 5215–5226 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, D. et al. SKI activates Wnt/β-catenin signaling in human melanoma. Cancer Res. 63, 6626–6634 (2003).

    CAS  PubMed  Google Scholar 

  45. Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Bennett, D. C. Human melanocyte senescence and melanoma susceptibility genes. Oncogene 22, 3063–3069 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Hayward, N. K. Genetics of melanoma predisposition. Oncogene 22, 3053–3062 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Sharpless, E. & Chin, L. The INK4a/ARF locus and melanoma. Oncogene 22, 3092–3098 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Polsky, D., Young, A. Z., Busam, K. J. & Alani, R. M. The transcriptional repressor of p16/Ink4a, Id1, is up-regulated in early melanomas. Cancer Res. 61, 6008–6011 (2001).

    CAS  PubMed  Google Scholar 

  52. Sauter, E. R. et al. Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res. 62, 3200–3206 (2002).

    CAS  PubMed  Google Scholar 

  53. Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet. 33, 19–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Papp, T. et al. Mutational analysis of N-ras, p53, CDKN2A (p16INK4a), p14ARF, CDK4, and MC1R genes in human dysplastic melanocytic naevi. J. Med. Genet. 40, E14 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Soengas, M. S. & Lowe, S. W. Apoptosis and melanoma chemoresistance. Oncogene 22, 3138–3151 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Tarhini, A. A. & Agarwala, S. S. Cutaneous melanoma: available therapy for metastatic disease. Dermatol. Ther. 19, 19–25 (2006).

    Article  PubMed  Google Scholar 

  58. Kirkwood, J. M., Moschos, S. & Wang, W. Strategies for the development of more effective adjuvant therapy of melanoma: current and future explorations of antibodies, cytokines, vaccines, and combinations. Clin. Cancer Res. 12, 2331s–2336s (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smalley, K. S. & Eisen, T. G. Farnesyl transferase inhibitor SCH66336 is cytostatic, pro-apoptotic and enhances chemosensitivity to cisplatin in melanoma cells. Int. J. Cancer 105, 165–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Wilhelm, S. M. et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Flaherty, K. T. Chemotherapy and targeted therapy combinations in advanced melanoma. Clin. Cancer Res. 12, 2366s–2370s (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Eisen, T. et al. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br. J. Cancer 95, 581–586 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gray-Schopfer, V., Karasarides, M., Hayward, R. & Marais, R. Tumor necrosis factor-α blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res. 67, 122–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Adnane, L., Trail, P. A., Taylor, I. & Wilhelm, S. M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol. 407, 597–612 (2005).

    Article  CAS  Google Scholar 

  66. Garnett, M. J., Rana, S., Paterson, H., Barford, D. & Marais, R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell 20, 963–969 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Dumaz, N. et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res. 66, 9483–9491 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Collisson, E. A., De, A., Suzuki, H., Gambhir, S. S. & Kolodney, M. S. Treatment of metastatic melanoma with an orally available inhibitor of the Ras–Raf–MAPK cascade. Cancer Res. 63, 5669–5673 (2003).

    CAS  PubMed  Google Scholar 

  69. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    ADS  CAS  PubMed  Google Scholar 

  70. Koo, H. M. et al. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proc. Natl Acad. Sci. USA 99, 3052–3057 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Beinke, S., Robinson, M. J., Hugunin, M. & Ley, S. C. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol. Cell. Biol. 24, 9658–9667 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dancey, J. E. Therapeutic targets: MTOR and related pathways. Cancer Biol. Ther. 5, 1065–1073 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Bush, J. A. & Li, G. The role of Bcl-2 family members in the progression of cutaneous melanoma. Clin. Exp. Metastasis 20, 531–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Nishimura, E. K., Granter, S. R. & Fisher, D. E. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307, 720–724 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Jansen, B. et al. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nature Med. 4, 232–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Bedikian, A. Y. et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J. Clin. Oncol. 24, 4738–4745 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Del Bufalo, D., Trisciuoglio, D., Scarsella, M., Zangemeister-Wittke, U. & Zupi, G. Treatment of melanoma cells with a bcl-2/bcl-xL antisense oligonucleotide induces antiangiogenic activity. Oncogene 22, 8441–8447 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Fry, D. W. et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther. 3, 1427–1438 (2004).

    CAS  PubMed  Google Scholar 

  79. Sharp, S. & Workman, P. Inhibitors of the HSP90 molecular chaperone: current status. Adv. Cancer Res. 95, 323–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. da Rocha Dias, S. et al. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 65, 10686–10691 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Grbovic, O. M. et al. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl Acad. Sci. USA 103, 57–62 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Amiri, K. I., Horton, L. W., LaFleur, B. J., Sosman, J. A. & Richmond, A. Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma. Cancer Res. 64, 4912–4918 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Burke, J. R. et al. BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κ B-dependent transcription in mice. J. Biol. Chem. 278, 1450–1456 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Rofstad, E. K. & Halsor, E. F. Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res. 60, 4932–4938 (2000).

    CAS  PubMed  Google Scholar 

  85. Tucker, G. C. Integrins: molecular targets in cancer therapy. Curr. Oncol. Rep. 8, 96–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Gutheil, J. C. et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin ανβ3 . Clin. Cancer Res. 6, 3056–3061 (2000).

    CAS  PubMed  Google Scholar 

  87. Gupta, P. B., Mani, S., Yang, J., Hartwell, K. & Weinberg, R. A. The evolving portrait of cancer metastasis. Cold Spring Harb. Symp. Quant. Biol. 70, 291–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125, 1269–1281 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Straume, O. & Akslen, L. A. Alterations and prognostic significance of p16 and p53 protein expression in subgroups of cutaneous melanoma. Int. J. Cancer 74, 535–539 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, P. et al. ARRY-142886, a potent and selective MEK inhibitor: III) Efficacy in murine xenograft models correlates with decreased ERK phosphorylation. Proc. Am. Assoc. Cancer Res. 45, 897 (2004).

    Google Scholar 

  91. Lyssikatos, J. et al. ARRY-142886, a potent and selective MEK inhibitor: I) ATP-independent inhibition results in high enzymatic and cellular selectivity. Proc. Am. Assoc. Cancer Res. 45, 896-b (2004).

    Google Scholar 

  92. Yeh, T., Wallace, E., Lyssikatos, J. & Winkler, J. ARRY-142886, a potent and selective MEK inhibitor: II) Potency against cellular MEK leads to inhibition of cellular proliferation and induction of apoptosis in cell lines with mutant Ras or B-Raf. Proc. Am. Assoc. Cancer Res. 45, 896-c–897-c (2004).

    Google Scholar 

  93. Morabito, A., De Maio, E., Di Maio, M., Normanno, N. & Perrone, F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist 11, 753–764 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Peterson, A. C. et al. Phase II study of the Flk-1 tyrosine kinase inhibitor SU5416 in advanced melanoma. Clin. Cancer Res. 10, 4048–4054 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Margolin, K. et al. CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer 104, 1045–1048 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. O'Donnell, A. et al. A phase I study of the oral mTOR inhibitor RAD001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK), and pharmacodynamic (PD) endpoints in patients with solid tumors. Proc. Am. Soc. Clin. Oncol. 22, Abstr. 806 (2003).

  97. End, D. W. et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res. 61, 131–137 (2001).

    CAS  PubMed  Google Scholar 

  98. Markovic, S. N. et al. A phase II study of bortezomib in the treatment of metastatic malignant melanoma. Cancer 103, 2584–2589 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Yang, J., Amiri, K. I., Burke, J. R., Schmid, J. A. & Richmond, A. BMS-345541 targets inhibitor of κB kinase and induces apoptosis in melanoma: involvement of nuclear factor κB and mitochondria pathways. Clin. Cancer Res. 12, 950–960 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yaguchi, S. et al. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J. Natl Cancer Inst. 98, 545–556 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is funded by grants from The Institute of Cancer Research, Cancer Research UK, and the Association for International Cancer Research.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray-Schopfer, V., Wellbrock, C. & Marais, R. Melanoma biology and new targeted therapy. Nature 445, 851–857 (2007). https://doi.org/10.1038/nature05661

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05661

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing