Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural recognition and functional activation of FcγR by innate pentraxins

Abstract

Pentraxins are a family of ancient innate immune mediators conserved throughout evolution. The classical pentraxins include serum amyloid P component (SAP) and C-reactive protein, which are two of the acute-phase proteins synthesized in response to infection1,2. Both recognize microbial pathogens and activate the classical complement pathway through C1q (refs 3 and 4). More recently, members of the pentraxin family were found to interact with cell-surface Fcγ receptors (FcγR) and activate leukocyte-mediated phagocytosis5,6,7,8. Here we describe the structural mechanism for pentraxin’s binding to FcγR and its functional activation of FcγR-mediated phagocytosis and cytokine secretion. The complex structure between human SAP and FcγRIIa reveals a diagonally bound receptor on each SAP pentamer with both D1 and D2 domains of the receptor contacting the ridge helices from two SAP subunits. The 1:1 stoichiometry between SAP and FcγRIIa infers the requirement for multivalent pathogen binding for receptor aggregation. Mutational and binding studies show that pentraxins are diverse in their binding specificity for FcγR isoforms but conserved in their recognition structure. The shared binding site for SAP and IgG results in competition for FcγR binding and the inhibition of immune-complex-mediated phagocytosis by soluble pentraxins. These results establish antibody-like functions for pentraxins in the FcγR pathway, suggest an evolutionary overlap between the innate and adaptive immune systems, and have new therapeutic implications for autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of FcγR by pentraxin results in phagocytosis and cytokine release.
Figure 2: Crystal structure of SAP–FcγRIIa complex.
Figure 3: The binding interfaces between SAP and FcγRIIa.
Figure 4: Competition between human IgG1 and SAP or CRP for binding to Fcγ receptors.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates for the SAP–FcγRIIa complex have been deposited in the PDB data bank under accession number 3D5O.

References

  1. Steel, D. M. & Whitehead, A. S. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol. Today 15, 81–88 (1994)

    Article  CAS  Google Scholar 

  2. Pepys, M. B. et al. Comparative clinical study of protein SAP (amyloid P component) and C-reactive protein in serum. Clin. Exp. Immunol. 32, 119–124 (1978)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Garlanda, C., Bottazzi, B., Bastone, A. & Mantovani, A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu. Rev. Immunol. 23, 337–366 (2005)

    Article  CAS  Google Scholar 

  4. Kaplan, M. H. & Volanakis, J. E. Interaction of C-reactive protein complexes with the complement system. I. Consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccharide and with the choline phosphatides, lecithin and sphingomyelin. J. Immunol. 112, 2135–2147 (1974)

    CAS  PubMed  Google Scholar 

  5. Bharadwaj, D., Stein, M. P., Volzer, M., Mold, C. & Du Clos, T. W. The major receptor for C-reactive protein on leukocytes is Fcγ receptor II. J. Exp. Med. 190, 585–590 (1999)

    Article  CAS  Google Scholar 

  6. Marnell, L. L., Mold, C., Volzer, M. A., Burlingame, R. W. & Du Clos, T. W. C-reactive protein binds to FcγRI in transfected COS cells. J. Immunol. 155, 2185–2193 (1995)

    CAS  PubMed  Google Scholar 

  7. Bodman-Smith, K. B. et al. C-reactive protein-mediated phagocytosis and phospholipase D signalling through the high-affinity receptor for immunoglobulin G (FcγRI). Immunology 107, 252–260 (2002)

    Article  CAS  Google Scholar 

  8. Bharadwaj, D., Mold, C., Markham, E. & Du Clos, T. W. Serum amyloid P component binds to Fcγ receptors and opsonizes particles for phagocytosis. J. Immunol. 166, 6735–6741 (2001)

    Article  CAS  Google Scholar 

  9. Alles, V. V. et al. Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes. Blood 84, 3483–3493 (1994)

    CAS  PubMed  Google Scholar 

  10. Han, B. et al. TNFα-induced long pentraxin PTX3 expression in human lung epithelial cells via JNK. J. Immunol. 175, 8303–8311 (2005)

    Article  CAS  Google Scholar 

  11. Ravetch, J. V. & Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 19, 275–290 (2001)

    Article  CAS  Google Scholar 

  12. Bickerstaff, M. C. et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nature Med. 5, 694–697 (1999)

    Article  CAS  Google Scholar 

  13. Xia, D. & Samols, D. Transgenic mice expressing rabbit C-reactive protein are resistant to endotoxemia. Proc. Natl Acad. Sci. USA 94, 2575–2580 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Mold, C., Rodriguez, W., Rodic-Polic, B. & Du Clos, T. W. C-reactive protein mediates protection from lipopolysaccharide through interactions with FcγR. J. Immunol. 169, 7019–7025 (2002)

    Article  CAS  Google Scholar 

  15. Emsley, J. et al. Structure of pentameric human serum amyloid P component. Nature 367, 338–345 (1994)

    Article  ADS  CAS  Google Scholar 

  16. Maxwell, K. F. et al. Crystal structure of the human leukocyte Fc receptor, FcγRIIa. Nature Struct. Biol. 6, 437–442 (1999)

    Article  CAS  Google Scholar 

  17. Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993)

    Article  CAS  Google Scholar 

  18. Boyington, J. C., Motyka, S. A., Schuck, P., Brooks, A. G. & Sun, P. D. Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature 405, 537–543 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Ysern, X., Li, H. & Mariuzza, R. A. Imperfect interfaces. Nature Struct. Biol. 5, 412–414 (1998)

    Article  CAS  Google Scholar 

  20. Hulett, M. D. & Hogarth, P. M. Molecular basis of Fc receptor function. Adv. Immunol. 57, 1–127 (1994)

    Article  CAS  Google Scholar 

  21. Shrive, A. K. et al. Three dimensional structure of human C-reactive protein. Nature Struct. Biol. 3, 346–354 (1996)

    Article  CAS  Google Scholar 

  22. Thompson, D., Pepys, M. B. & Wood, S. P. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 7, 169–177 (1999)

    Article  CAS  Google Scholar 

  23. Bang, R. et al. Analysis of binding sites in human C-reactive protein for FcγRI, FcγRIIA, and C1q by site-directed mutagenesis. J. Biol. Chem. 280, 25095–25102 (2005)

    Article  CAS  Google Scholar 

  24. Tax, W. J., Willems, H. W., Reekers, P. P., Capel, P. J. & Koene, R. A. Polymorphism in mitogenic effect of IgG1 monoclonal antibodies against T3 antigen on human T cells. Nature 304, 445–447 (1983)

    Article  ADS  CAS  Google Scholar 

  25. Clark, M. R., Stuart, S. G., Kimberly, R. P., Ory, P. A. & Goldstein, I. M. A single amino acid distinguishes the high-responder from the low-responder form of Fc receptor II on human monocytes. Eur. J. Immunol. 21, 1911–1916 (1991)

    Article  CAS  Google Scholar 

  26. Parren, P. W. et al. On the interaction of IgG subclasses with the low affinity FcγRIIa (CD32) on human monocytes, neutrophils, and platelets. Analysis of a functional polymorphism to human IgG2. J. Clin. Invest. 90, 1537–1546 (1992)

    Article  CAS  Google Scholar 

  27. Stein, M. P. et al. C-reactive protein binding to FcγRIIa on human monocytes and neutrophils is allele-specific. J. Clin. Invest. 105, 369–376 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Radaev, S., Motyka, S., Fridman, W. H., Sautes-Fridman, C. & Sun, P. D. The structure of a human type III Fcγ receptor in complex with Fc. J. Biol. Chem. 276, 16469–16477 (2001)

    Article  CAS  Google Scholar 

  29. Mold, C., Baca, R. & Du Clos, T. W. Serum amyloid P component and C-reactive protein opsonize apoptotic cells for phagocytosis through Fcg receptors. J. Autoimmun. 19, 147–154 (2002)

    Article  Google Scholar 

  30. Mold, C. & Du Clos, T. W. C-reactive protein increases cytokine responses to Streptococcus pneumoniae through interactions with Fcγ receptors. J. Immunol. 176, 7598–7604 (2006)

    Article  CAS  Google Scholar 

  31. Sondermann, P. & Jacob, U. Human Fcγ receptor IIb expressed in Escherichia coli reveals IgG binding capability. Biol. Chem. 380, 717–721 (1999)

    Article  CAS  Google Scholar 

  32. Du Clos, T. W. C-reactive protein reacts with the U1 small nuclear ribonucleoprotein. J. Immunol. 143, 2553–2559 (1989)

    CAS  PubMed  Google Scholar 

  33. Potempa, L. A., Siegel, J. N., Fiedel, B. A., Potempa, R. T. & Gewurz, H. Expression, detection and assay of a neoantigen (Neo-CRP) associated with a free, human C-reactive protein subunit. Mol. Immunol. 24, 531–541 (1987)

    Article  CAS  Google Scholar 

  34. Otwinowski, Z. M. W. processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  35. Read, R. J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D 57, 1373–1382 (2001)

    Article  CAS  Google Scholar 

  36. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  37. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  38. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  39. Snyder, G. A., Brooks, A. G. & Sun, P. D. Crystal structure of the HLA-Cw3 allotype-specific killer cell inhibitory receptor KIR2DL2. Proc. Natl Acad. Sci. USA 96, 3864–3869 (1999)

    Article  ADS  CAS  Google Scholar 

  40. Mustard, D. & Ritchie, D. W. Docking essential dynamics eigenstructures. Proteins 60, 269–274 (2005)

    Article  CAS  Google Scholar 

  41. Delano, W. L. The PyMOL Molecular Graphics System <http://www.pymol.org> (2002)

    Google Scholar 

Download references

Acknowledgements

We thank D. Klinman, G. Cheng, P. W. Dempsey and S. Bolland for providing the bone marrow from the Myd88-/-, RIP2-/- and wild-type C57BL/6 mice, respectively; M. Pancera and B. Dey for technical support in the isothermal titration calorimetry experiments; V. Deretic and S. Master for assistance with confocal microscopy; and B. Bottazzi for providing PTX-3. The X-ray SER-CAT beamlines (www.ser-cat.org/members.html) at the Advanced Photon Source is supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract no. W-31-109-Eng-38. This work was supported by intramural research funding from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and by RO1 AI28358 and by the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Sun.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Tables 1-3 and Supplementary Figures S1-S5 with Legends. (PDF 846 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Marnell, L., Marjon, K. et al. Structural recognition and functional activation of FcγR by innate pentraxins. Nature 456, 989–992 (2008). https://doi.org/10.1038/nature07468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07468

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing