Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A luminal epithelial stem cell that is a cell of origin for prostate cancer

Abstract

In epithelial tissues, the lineage relationship between normal progenitor cells and cell type(s) of origin for cancer has been poorly understood. Here we show that a known regulator of prostate epithelial differentiation, the homeobox gene Nkx3-1, marks a stem cell population that functions during prostate regeneration. Genetic lineage-marking demonstrates that rare luminal cells that express Nkx3-1 in the absence of testicular androgens (castration-resistant Nkx3-1-expressing cells, CARNs) are bipotential and can self-renew in vivo, and single-cell transplantation assays show that CARNs can reconstitute prostate ducts in renal grafts. Functional assays of Nkx3-1 mutant mice in serial prostate regeneration suggest that Nkx3-1 is required for stem cell maintenance. Furthermore, targeted deletion of the Pten tumour suppressor gene in CARNs results in rapid carcinoma formation after androgen-mediated regeneration. These observations indicate that CARNs represent a new luminal stem cell population that is an efficient target for oncogenic transformation in prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Nkx3-1 in epithelial cells of the intact, regressed and regenerated anterior prostate.
Figure 2: Bipotentiality and self-renewal of CARNs in vivo.
Figure 3: Generation of prostatic ducts in renal grafts by single lineage-marked CARNs.
Figure 4: Nkx3-1 mutants display prostate epithelial defects in a serial regeneration assay.
Figure 5: The CARN population contains a cell type of origin for prostate cancer.
Figure 6: Possible lineage relationships in the prostate epithelium.

Similar content being viewed by others

References

  1. Abate-Shen, C. & Shen, M. M. Molecular genetics of prostate cancer. Genes Dev. 14, 2410–2434 (2000)

    Article  CAS  Google Scholar 

  2. English, H. F., Santen, R. J. & Isaacs, J. T. Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11, 229–242 (1987)

    Article  CAS  Google Scholar 

  3. Evans, G. S. & Chandler, J. A. Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 11, 339–351 (1987)

    Article  CAS  Google Scholar 

  4. Sugimura, Y., Cunha, G. R. & Donjacour, A. A. Morphological and histological study of castration-induced degeneration and androgen-induced regeneration in the mouse prostate. Biol. Reprod. 34, 973–983 (1986)

    Article  CAS  Google Scholar 

  5. Isaacs, J. T. in Benign Prostatic Hyperplasia (eds Rodgers C. H. et al.) 85–94 (Department of Health and Human Services, 1985)

    Google Scholar 

  6. Tsujimura, A. et al. Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J. Cell Biol. 157, 1257–1265 (2002)

    Article  CAS  Google Scholar 

  7. Lawson, D. A. & Witte, O. N. Stem cells in prostate cancer initiation and progression. J. Clin. Invest. 117, 2044–2050 (2007)

    Article  CAS  Google Scholar 

  8. Senoo, M., Pinto, F., Crum, C. P. & McKeon, F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129, 523–536 (2007)

    Article  CAS  Google Scholar 

  9. Lawson, D. A., Xin, L., Lukacs, R. U., Cheng, D. & Witte, O. N. Isolation and functional characterization of murine prostate stem cells. Proc. Natl Acad. Sci. USA 104, 181–186 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Richardson, G. D. et al. CD133, a novel marker for human prostatic epithelial stem cells. J. Cell Sci. 117, 3539–3545 (2004)

    Article  CAS  Google Scholar 

  11. Burger, P. E. et al. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc. Natl Acad. Sci. USA 102, 7180–7185 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Xin, L., Lawson, D. A. & Witte, O. N. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc. Natl Acad. Sci. USA 102, 6942–6947 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Goldstein, A. S. et al. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc. Natl Acad. Sci. USA 105, 20882–20887 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Leong, K. G., Wang, B. E., Johnson, L. & Gao, W. Q. Generation of a prostate from a single adult stem cell. Nature 456, 804–808 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Kurita, T., Medina, R. T., Mills, A. A. & Cunha, G. R. Role of p63 and basal cells in the prostate. Development 131, 4955–4964 (2004)

    Article  CAS  Google Scholar 

  16. Kasper, S. Stem cells: the root of prostate cancer? J. Cell. Physiol. 216, 332–336 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Wang, S. et al. Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc. Natl Acad. Sci. USA 103, 1480–1485 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Grisanzio, C. & Signoretti, S. p63 in prostate biology and pathology. J. Cell. Biochem. 103, 1354–1368 (2008)

    Article  CAS  Google Scholar 

  19. Humphrey, P. A. Diagnosis of adenocarcinoma in prostate needle biopsy tissue. J. Clin. Pathol. 60, 35–42 (2007)

    Article  CAS  Google Scholar 

  20. Abate-Shen, C., Shen, M. M. & Gelmann, E. Integrating differentiation and cancer: the Nkx3. 1 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation 76, 717–727 (2008)

    Article  CAS  Google Scholar 

  21. Bhatia-Gaur, R. et al. Roles for Nkx3. 1 in prostate development and cancer. Genes Dev. 13, 966–977 (1999)

    Article  CAS  Google Scholar 

  22. Abdulkadir, S. A. et al. Conditional loss of Nkx3. 1 in adult mice induces prostatic intraepithelial neoplasia. Mol. Cell. Biol. 22, 1495–1503 (2002)

    Article  CAS  Google Scholar 

  23. Kim, M. J. et al. Nkx3. 1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res. 62, 2999–3004 (2002)

    CAS  PubMed  Google Scholar 

  24. Chen, H., Mutton, L. N., Prins, G. S. & Bieberich, C. J. Distinct regulatory elements mediate the dynamic expression pattern of Nkx3. 1 . Dev. Dyn. 234, 961–973 (2005)

    Article  CAS  Google Scholar 

  25. Sciavolino, P. J. et al. Tissue-specific expression of murine Nkx3. 1 in the male urogenital system. Dev. Dyn. 209, 127–138 (1997)

    Article  CAS  Google Scholar 

  26. Bieberich, C. J., Fujita, K., He, W.-W. & Jay, G. Prostate-specific and androgen-dependent expression of a novel homeobox gene. J. Biol. Chem. 271, 31779–31782 (1996)

    Article  CAS  Google Scholar 

  27. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997)

    Article  CAS  Google Scholar 

  28. Indra, A. K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 27, 4324–4327 (1999)

    Article  CAS  Google Scholar 

  29. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001)

    Article  CAS  Google Scholar 

  30. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999)

    Article  CAS  Google Scholar 

  31. Cunha, G. R. & Vanderslice, K. D. Identification in histological sections of species origin of cells from mouse, rat and human. Stain Technol. 59, 7–12 (1984)

    Article  CAS  Google Scholar 

  32. Kiel, M. J. et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449, 238–242 (2007)

    Article  ADS  CAS  Google Scholar 

  33. Bickenbach, J. R. & Holbrook, K. A. Label-retaining cells in human embryonic and fetal epidermis. J. Invest. Dermatol. 88, 42–46 (1987)

    Article  CAS  Google Scholar 

  34. Cotsarelis, G., Cheng, S. Z., Dong, G., Sun, T. T. & Lavker, R. M. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57, 201–209 (1989)

    Article  CAS  Google Scholar 

  35. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo . Science 294, 2186–2189 (2001)

    Article  ADS  CAS  Google Scholar 

  36. Nakagawa, T., Nabeshima, Y. & Yoshida, S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev. Cell 12, 195–206 (2007)

    Article  CAS  Google Scholar 

  37. Xu, X. et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207 (2008)

    Article  CAS  Google Scholar 

  38. Barroca, V. et al. Mouse differentiating spermatogonia can generate germinal stem cells in vivo . Nature Cell Biol. 11, 190–196 (2009)

    Article  CAS  Google Scholar 

  39. Weaver, M. & Krasnow, M. A. Dual origin of tissue-specific progenitor cells in Drosophila tracheal remodeling. Science 321, 1496–1499 (2008)

    Article  ADS  CAS  Google Scholar 

  40. Magee, J. A., Abdulkadir, S. A. & Milbrandt, J. Haploinsufficiency at the Nkx3. 1 locus: a paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell 3, 273–283 (2003)

    Article  CAS  Google Scholar 

  41. Lei, Q. et al. NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell 9, 367–378 (2006)

    Article  CAS  Google Scholar 

  42. Ouyang, X., DeWeese, T. L., Nelson, W. G. & Abate-Shen, C. Loss-of-function of Nkx3. 1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res. 65, 6773–6779 (2005)

    Article  CAS  Google Scholar 

  43. Kim, C. F. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005)

    Article  CAS  Google Scholar 

  44. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009)

    Article  ADS  CAS  Google Scholar 

  45. Banach-Petrosky, W. et al. Prolonged exposure to reduced levels of androgen accelerates prostate cancer progression in Nkx3. 1; Pten mutant mice. Cancer Res. 67, 9089–9096 (2007)

    Article  CAS  Google Scholar 

  46. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo: A Laboratory Manual Chs 8–11 359–506 (Cold Spring Harbor Laboratory Press, 2003)

    Google Scholar 

  47. Bunting, M., Bernstein, K. E., Greer, J. M., Capecchi, M. R. & Thomas, K. R. Targeting genes for self-excision in the germ line. Genes Dev. 13, 1524–1528 (1999)

    Article  CAS  Google Scholar 

  48. Tybulewicz, V. L., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991)

    Article  CAS  Google Scholar 

  49. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921 (1996)

    Article  CAS  Google Scholar 

  50. Gao, H., Ouyang, X., Banach-Petrosky, W. A., Shen, M. M. & Abate-Shen, C. Emergence of androgen independence at early stages of prostate cancer progression in Nkx3. 1; Pten mice. Cancer Res. 66, 7929–7933 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kim for her initial observations on Nkx3-1 expression in the regressed prostate, and C. Cordon-Cardo, E. Gelmann, C. Mendelsohn and B. Reizis for comments on the manuscript. We are also grateful to C. Bieberich, M. Capecchi, P. Chambon and F. Costantini for providing mice and reagents. This work was supported by grants from the NIH (C.A.-S. and M.M.S.), DOD Prostate Cancer Research Program (K.D.E., C.A.-S. and M.M.S.), and the NCI Mouse Models of Human Cancer Consortium.

Author Contributions X.W., M.K.-D., K.D.E., C.A.-S. and M.M.S. designed experiments, Y.P.-H. and S.M.P. generated mouse reagents, X.W., M.K.-D., K.D.E., D.W., H.Y. and M.V.H. performed experiments, and X.W., M.K.-D., C.A.-S. and M.M.S. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Shen.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-5, Supplementary References and Supplementary Figures 1- 9 with Legends. (PDF 2647 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Julio, Md., Economides, K. et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495–500 (2009). https://doi.org/10.1038/nature08361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08361

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing