Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction

An Erratum to this article was published on 08 February 2012

This article has been updated

Abstract

Suppression of inflammation is critical for effective therapy of many infectious diseases. However, the high rates of mortality caused by sepsis attest to the need to better understand the basis of the inflammatory sequelae of sepsis and to develop new options for its treatment. In mice, inflammatory responses to host danger-associated molecular patterns (DAMPs), but not to microbial pathogen-associated molecular patterns (PAMPs), are repressed by the interaction of CD24 and SiglecG (SIGLEC10 in human). Here we use an intestinal perforation model of sepsis to show that microbial sialidases target the sialic acid–based recognition of CD24 by SiglecG/10 to exacerbate inflammation. Sialidase inhibitors protect mice against sepsis by a mechanism involving both CD24 and Siglecg, whereas mutation of either gene exacerbates sepsis. Analysis of sialidase-deficient bacterial mutants confirms the key contribution of disrupting sialic acid–based pattern recognition to microbial virulence and supports the clinical potential of sialidase inhibition for dampening inflammation caused by infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD24 and SiglecG protect mice against inflammation and mortality associated with polybacterial sepsis.
Figure 2: Expression of CD24 predominantly on CD11c+ cells protects against sepsis.
Figure 3: The interaction of CD24 with SIGLEC10 depends on sialylation of CD24.
Figure 4: Increased circulating sialidase activity and reduction of SIGLEC10 binding of CD24 in CLP mice.
Figure 5: Sialidase inhibitors protect mice against sepsis.
Figure 6: S. pneumoniae sialidases exacerbate sepsis by a CD24 and SiglecG-dependent mechanism.

Similar content being viewed by others

Change history

  • 18 January 2012

    In the version of this article initially published, a line in the abstract read, “repressed by the t interaction….” It should have read, “repressed by the interaction….” The error has been corrected in the HTML and PDF versions of the article.

References

  1. Favre, D. et al. Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog. 5, e1000295 (2009).

    Article  Google Scholar 

  2. Dombrovskiy, V.Y., Martin, A.A., Sunderram, J. & Paz, H.L. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit. Care Med. 35, 1244–1250 (2007).

    Article  Google Scholar 

  3. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  Google Scholar 

  4. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  Google Scholar 

  5. Inohara, N., Ogura, Y. & Nunez, G. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr. Opin. Microbiol. 5, 76–80 (2002).

    Article  CAS  Google Scholar 

  6. Ting, J.P., Willingham, S.B. & Bergstralh, D.T. NLRs at the intersection of cell death and immunity. Nat. Rev. Immunol. 8, 372–379 (2008).

    Article  CAS  Google Scholar 

  7. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  Google Scholar 

  8. Kono, H. & Rock, K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    Article  CAS  Google Scholar 

  9. Wang, H. et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251 (1999).

    Article  CAS  Google Scholar 

  10. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  CAS  Google Scholar 

  11. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  Google Scholar 

  12. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    Article  CAS  Google Scholar 

  13. Chen, G.Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323, 1722–1725 (2009).

    Article  CAS  Google Scholar 

  14. Crocker, P.R., Paulson, J.C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    Article  CAS  Google Scholar 

  15. Varki, A. Multiple changes in sialic acid biology during human evolution. Glycoconj. J. 26, 231–245 (2009).

    Article  CAS  Google Scholar 

  16. Ding, C. et al. Siglecg limits the size of B1a B cell lineage by down-regulating NFκB activation. PLoS ONE 2, e997 (2007).

    Article  Google Scholar 

  17. Hoffmann, A. et al. Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nat. Immunol. 8, 695–704 (2007).

    Article  CAS  Google Scholar 

  18. Duong, B.H. et al. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J. Exp. Med. 207, 173–187 (2010).

    Article  CAS  Google Scholar 

  19. Carlin, A.F. et al. Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113, 3333–3336 (2009).

    Article  CAS  Google Scholar 

  20. Jedrzejas, M.J. Pneumococcal virulence factors: structure and function. Microbiol. Mol. Biol. Rev. 65, 187–207 (2001).

    Article  CAS  Google Scholar 

  21. Mally, M., Shin, H., Paroz, C., Landmann, R. & Cornelis, G.R. Capnocytophaga canimorsus: a human pathogen feeding at the surface of epithelial cells and phagocytes. PLoS Pathog. 4, e1000164 (2008).

    Article  Google Scholar 

  22. Peltola, V.T., Murti, K.G. & McCullers, J.A. Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J. Infect. Dis. 192, 249–257 (2005).

    Article  CAS  Google Scholar 

  23. Tong, H.H., Blue, L.E., James, M.A. & DeMaria, T.F. Evaluation of the virulence of a Streptococcus pneumoniae neuraminidase-deficient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect. Immun. 68, 921–924 (2000).

    Article  CAS  Google Scholar 

  24. Rittirsch, D., Huber-Lang, M.S., Flierl, M.A. & Ward, P.A. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31–36 (2009).

    Article  CAS  Google Scholar 

  25. Brocker, T., Riedinger, M. & Karjalainen, K. Driving gene expression specifically in dendritic cells. Adv. Exp. Med. Biol. 417, 55–57 (1997).

    Article  CAS  Google Scholar 

  26. Chen, M. et al. Dendritic cell apoptosis in the maintenance of immune tolerance. Science 311, 1160–1164 (2006).

    Article  CAS  Google Scholar 

  27. Blixt, O., Collins, B.E., van den Nieuwenhof, I.M., Crocker, P.R. & Paulson, J.C. Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J. Biol. Chem. 278, 31007–31019 (2003).

    Article  CAS  Google Scholar 

  28. Li, Y. et al. Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies. Mol. Biosyst. 7, 1060–1072 (2011).

    Article  CAS  Google Scholar 

  29. Lee, L.T. & Howe, C. Pneumococcal neuraminidase. J. Bacteriol. 91, 1418–1426 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. O'Brien, K.L. et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374, 893–902 (2009).

    Article  Google Scholar 

  31. Liu, Y., Chen, G.Y. & Zheng, P. CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol. 30, 557–561 (2009).

    Article  CAS  Google Scholar 

  32. Liu, Y., Chen, G.Y. & Zheng, P. Sialoside-based pattern recognitions discriminating infections from tissue injuries. Curr. Opin. Immunol. (2010).

  33. Piagnerelli, M. et al. Neuraminidase alters red blood cells in sepsis. Crit. Care Med. 37, 1244–1250 (2009).

    Article  CAS  Google Scholar 

  34. Grewal, P.K. et al. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat. Med. 14, 648–655 (2008).

    Article  CAS  Google Scholar 

  35. Drzeniek, R. Viral and bacterial neuraminidases. Curr. Top. Microbiol. Immunol. 59, 35–74 (1972).

    CAS  PubMed  Google Scholar 

  36. Jedrzejas, M.J. Pneumococcal virulence factors: structure and function. Microbiol. Mol. Biol. Rev. 65, 187–207 (2001).

    Article  CAS  Google Scholar 

  37. Cavassani, K.A. et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med. 205, 2609–2621 (2008).

    Article  CAS  Google Scholar 

  38. Janeway, C. Immunogenicity signals 1,2,3...and 0. Immunol. Today [news] 10, 283–286 (1989).

    Article  CAS  Google Scholar 

  39. Rittirsch, D., Flierl, M.A. & Ward, P.A. Harmful molecular mechanisms in sepsis. Nat. Rev. Immunol. 8, 776–787 (2008).

    Article  CAS  Google Scholar 

  40. Rittirsch, D., Hoesel, L.M. & Ward, P.A. The disconnect between animal models of sepsis and human sepsis. J. Leukoc. Biol. 81, 137–143 (2007).

    Article  CAS  Google Scholar 

  41. Yu, H. et al. A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 127, 17618–17619 (2005).

    Article  CAS  Google Scholar 

  42. Yu, H. et al. Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: a P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angew. Chem. Int. Edn Engl. 45, 3938–3944 (2006).

    Article  CAS  Google Scholar 

  43. Li, Y. et al. Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Appl. Microbiol. Biotechnol. 79, 963–970 (2008).

    Article  CAS  Google Scholar 

  44. Nielsen, P.J. et al. Altered erythrocytes and a leaky block in B-cell development in CD24/HSA-deficient mice. Blood 89, 1058–1067 (1997).

    CAS  PubMed  Google Scholar 

  45. Tettelin, H. et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498–506 (2001).

    Article  CAS  Google Scholar 

  46. King, S.J. et al. Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol. Microbiol. 54, 159–171 (2004).

    Article  CAS  Google Scholar 

  47. Burnaugh, A.M., Frantz, L.J. & King, S.J. Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J. Bacteriol. 190, 221–230 (2008).

    Article  CAS  Google Scholar 

  48. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P.N. Boyaka for valuable advice, Y. Chen for critical reading of the manuscript and valuable discussions and D. Kroft for editorial assistance. This study is supported by grants from US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

G.-Y.C., K.A.C., J.C., H.C., H.Y., X.Z., D.F., W.W., J.Q., S.A.W., C.H., C.C. and L.S. performed experiments, C.M.H., and S.L.K. advised on CLP model, X.-F. B. and J.-Q.L. provided transgenic mice, Y.L., P.Z. and G.-Y.C. designed the overall study. X.C. supervised synthesis of sialosides and sialo-modifications of CD24Fc, while S.K. supervised production of mutant bacteria. Y.L., P.Z. and G.-Y.C. wrote the manuscript with input from other authors.

Corresponding authors

Correspondence to Pan Zheng or Yang Liu.

Ethics declarations

Competing interests

Y.L., P.Z., G.-Y.C., X.C. and S.K. are co-inventors of a pending patent application that has been licensed to OncoImmune, Inc., of which Y.L. and P.Z. are among the co-founders and have equity interest.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figs. 1–5 (PDF 476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GY., Chen, X., King, S. et al. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol 29, 428–435 (2011). https://doi.org/10.1038/nbt.1846

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1846

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research