Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection

Abstract

Despite substantial improvements, influenza vaccine production—and availability—remain suboptimal. Influenza vaccines based on mRNA may offer a solution as sequence-matched, clinical-grade material could be produced reliably and rapidly in a scalable process, allowing quick response to the emergence of pandemic strains. Here we show that mRNA vaccines induce balanced, long-lived and protective immunity to influenza A virus infections in even very young and very old mice and that the vaccine remains protective upon thermal stress. This vaccine format elicits B and T cell–dependent protection and targets multiple antigens, including the highly conserved viral nucleoprotein, indicating its usefulness as a cross-protective vaccine. In ferrets and pigs, mRNA vaccines induce immunological correlates of protection and protective effects similar to those of a licensed influenza vaccine in pigs. Thus, mRNA vaccines could address substantial medical need in the area of influenza prophylaxis and the broader realm of anti-infective vaccinology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mRNA vaccination induces antigen-specific B- and T-cell immune responses in BALB/c mice.
Figure 2: Protective efficacy of mRNA vaccine against lethal virus challenge in BALB/c mice.
Figure 3: mRNA vaccine is immunogenic in newborn and aged mice and elicits durable protection.
Figure 4: Selected mRNA vaccines induce protection after single administration and protect against challenge with heterologous virus.
Figure 5: Immunogenicity of mRNA vaccine in ferrets and pigs and protective efficacy in pigs.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Plotkin, S.A., Orenstein, W.A. & Offit, P.A. Vaccines: Expert Consult (Saunders, 2008).

  2. Fiore, A.E. et al. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2010. MMWR Recomm. Rep. 59, 1–62 (2010).

    PubMed  Google Scholar 

  3. Doherty, P.C., Turner, S.J., Webby, R.G. & Thomas, P.G. Influenza and the challenge for immunology. Nat. Immunol. 7, 449–455 (2006).

    Article  CAS  Google Scholar 

  4. Salomon, R. & Webster, R.G. The influenza virus enigma. Cell 136, 402–410 (2009).

    Article  CAS  Google Scholar 

  5. Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A. & Martin, M.A. Fields Virology (Lippincott Williams & Wilkins, 2006).

  6. Tong, S. et al. A distinct lineage of influenza A virus from bats. Proc. Natl. Acad. Sci. USA 109, 4269–4274 (2012).

    Article  CAS  Google Scholar 

  7. de Jong, J.C., Beyer, W.E., Palache, A.M., Rimmelzwaan, G.F. & Osterhaus, A.D. Mismatch between the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. J. Med. Virol. 61, 94–99 (2000).

    Article  CAS  Google Scholar 

  8. Ulmer, J.B., Valley, U. & Rappuoli, R. Vaccine manufacturing: challenges and solutions. Nat. Biotechnol. 24, 1377–1383 (2006).

    Article  CAS  Google Scholar 

  9. Lambert, L.C. & Fauci, A.S. Influenza vaccines for the future. N. Engl. J. Med. 363, 2036–2044 (2010).

    Article  CAS  Google Scholar 

  10. Nabel, G.J. & Fauci, A.S. Induction of unnatural immunity: prospects for a broadly protective universal influenza vaccine. Nat. Med. 16, 1389–1391 (2010).

    Article  CAS  Google Scholar 

  11. Forde, G.M. Rapid-response vaccines—does DNA offer a solution? Nat. Biotechnol. 23, 1059–1062 (2005).

    Article  CAS  Google Scholar 

  12. Liu, M.A. Immunologic basis of vaccine vectors. Immunity 33, 504–515 (2010).

    Article  CAS  Google Scholar 

  13. Thalhamer, J., Weiss, R. & Scheiblhofer, S. Gene Vaccines (Springer, Wien and New York; 2011).

  14. Hoerr, I., Obst, R., Rammensee, H.G. & Jung, G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur. J. Immunol. 30, 1–7 (2000).

    Article  CAS  Google Scholar 

  15. Fotin-Mleczek, M. et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J. Immunother. 34, 1–15 (2011).

    Article  CAS  Google Scholar 

  16. Sebastian, M. et al. Messenger RNA vaccination in NSCLC: findings from a phase I/IIa clinical trial. J. Clin. Oncol. 29 (suppl; abstr 2584) (2011).

    Article  Google Scholar 

  17. Kübler, H. et al. Final analysis of a phase I/IIa study with CV9103, an intradermally administered prostate cancer immunotherapy based on self-adjuvanted mRNA. J. Clin. Oncol. 29 (suppl; abstr 4535) (2011).

    Article  Google Scholar 

  18. Potter, C.W. & Oxford, J.S. Determinants of immunity to influenza infection in man. Br. Med. Bull. 35, 69–75 (1979).

    Article  CAS  Google Scholar 

  19. Plotkin, S.A. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis. 47, 401–409 (2008).

    Article  Google Scholar 

  20. Brown, D.M., Dilzer, A.M., Meents, D.L. & Swain, S.L. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J. Immunol. 177, 2888–2898 (2006).

    Article  CAS  Google Scholar 

  21. Galli, G. et al. Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels. Proc. Natl. Acad. Sci. USA 106, 3877–3882 (2009).

    Article  CAS  Google Scholar 

  22. Hamada, H. et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J. Immunol. 182, 3469–3481 (2009).

    Article  CAS  Google Scholar 

  23. Wilkinson, T.M. et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18, 274–280 (2012).

    Article  CAS  Google Scholar 

  24. Deng, Y., Yewdell, J.W., Eisenlohr, L.C. & Bennink, J.R. MHC affinity, peptide liberation, T cell repertoire, and immunodominance all contribute to the paucity of MHC class I-restricted peptides recognized by antiviral CTL. J. Immunol. 158, 1507–1515 (1997).

    CAS  PubMed  Google Scholar 

  25. Boon, A.C.M. et al. Cross-reactive neutralizing antibodies directed against pandemic H1N1 2009 virus are protective in a highly sensitive DBA/2 mouse influenza model. J. Virol. 84, 7662–7667 (2010).

    Article  CAS  Google Scholar 

  26. McMichael, A.J., Gotch, F.M., Noble, G.R. & Beare, P.A. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 309, 13–17 (1983).

    Article  CAS  Google Scholar 

  27. Ulmer, J.B. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749 (1993).

    Article  CAS  Google Scholar 

  28. Rimmelzwaan, G.F., Fouchier, R.A.M. & Osterhaus, A.D.M.E. Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Curr. Opin. Biotechnol. 18, 529–536 (2007).

    Article  CAS  Google Scholar 

  29. Kistner, O. et al. A whole virus pandemic influenza H1N1 vaccine is highly immunogenic and protective in active immunization and passive protection mouse models. PLoS ONE 5, e9349 (2010).

    Article  Google Scholar 

  30. Chaloupka, I., Schuler, A., Marschall, M. & Meier-Ewert, H. Comparative analysis of six European influenza vaccines. Eur. J. Clin. Microbiol. Infect. Dis. 15, 121–127 (1996).

    Article  CAS  Google Scholar 

  31. Belshe, R.B. Translational research on vaccines: influenza as an example. Clin. Pharmacol. Ther. 82, 745–749 (2007).

    Article  CAS  Google Scholar 

  32. van der Laan, J.W. et al. Animal models in influenza vaccine testing. Expert Rev. Vaccines 7, 783–793 (2008).

    Article  CAS  Google Scholar 

  33. Van Reeth, K., Labarque, G., De Clercq, S. & Pensaert, M. Efficacy of vaccination of pigs with different H1N1 swine influenza viruses using a recent challenge strain and different parameters of protection. Vaccine 19, 4479–4486 (2001).

    Article  CAS  Google Scholar 

  34. Pyo, H.-M. et al. Pandemic H1N1 influenza virus-like particles are immunogenic and provide protective immunity to pigs. Vaccine 30, 1297–1304 (2012).

    Article  CAS  Google Scholar 

  35. Lefevre, E.A. et al. Immune responses in pigs vaccinated with adjuvanted and non-adjuvanted A(H1N1)pdm/09 influenza vaccines used in human immunization programmes. PLoS ONE 7, e32400 (2012).

    Article  CAS  Google Scholar 

  36. Laurent, P.E. et al. Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine 25, 8833–8842 (2007).

    Article  CAS  Google Scholar 

  37. Dormitzer, P.R., Ulmer, J.B. & Rappuoli, R. Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol. 26, 659–667 (2008).

    Article  CAS  Google Scholar 

  38. Johansson, D.X., Ljungberg, K., Kakoulidou, M. & Liljeström, P. Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS ONE 7, e29732 (2012).

    Article  CAS  Google Scholar 

  39. Fotin-Mleczek, M. et al. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J. Gene Med. 14, 428–439 (2012).

    Article  CAS  Google Scholar 

  40. Schlake, T. et al. Developing mRNA-vaccine technologies. RNA Biol. (in the press) (2012).

    Article  CAS  Google Scholar 

  41. Pascolo, S. Vaccination with messenger RNA. Methods Mol. Med. 127, 23–40 (2006).

    CAS  PubMed  Google Scholar 

  42. Pascolo, S. Vaccination with messenger RNA (mRNA). Handb. Exp. Pharmacol. 221–235 (2008) doi:10.1007/978-3-540-72167-3_11.

    Chapter  Google Scholar 

  43. Reed, L.J. & Muench, H. A simple method of estimation of fifty percent end points. Am. J. Hyg. 27, 493–497 (1938).

    Google Scholar 

  44. Hai, R. et al. PB1-F2 expression by the 2009 pandemic H1N1 influenza virus has minimal impact on virulence in animal models. J. Virol. 84, 4442–4450 (2010).

    Article  CAS  Google Scholar 

  45. Cobbold, S.P., Jayasuriya, A., Nash, A., Prospero, T.D. & Waldmann, H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312, 548–551 (1984).

    Article  CAS  Google Scholar 

  46. Lange, E. et al. Pathogenesis and transmission of the novel swine-origin influenza virus A/H1N1 after experimental infection of pigs. J. Gen. Virol. 90, 2119–2123 (2009).

    Article  CAS  Google Scholar 

  47. Hoffmann, B. et al. New real-time reverse transcriptase polymerase chain reactions facilitate detection and differentiation of novel A/H1N1 influenza virus in porcine and human samples. Berl. Munch. Tierarztl. Wochenschr. 123, 286–292 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Carnitz, A. Möbes, K. Neumann, M. Queiser, N. Schneck, H. Schneider and E. Zirdum for excellent technical assistance and T. Ketterer, T. Mutzke, A. Schmid and their team for production of mRNA vaccines. We thank the following colleagues for graciously providing virus strains: M. Büttner (A/mallard/Bavaria/1/2006 (H5N1)), J. McCauley (A/Vietnam/1194/2004 (H5N1)), S. Becker (A/Regensburg/D6/2009 (H1N1v); received from M. Beer and T. Mettenleiter), O. Haller and G. Kochs (A/HongKong/1/1968 (H3N2)). We thank R. Zinkernagel and B. Schönfisch for critically reading the manuscript. This work was supported by grants from the Federal Ministry for Education and Research (BMBF), Germany (KMU-innovativ, grant no. 0315802 to T.K.) and by the Federal Ministry of Food, Agriculture and Consumer Protection (BMELV), Germany (FSI, project no. 2-43 to L.S.).

Author information

Authors and Affiliations

Authors

Contributions

B.P., M.S., A.B.V., E.L., D.V., K.-J.K., L.S. and T.K. conceived the project and designed experiments; B.P., M.S., A.B.V., E.L., B.H., A.T., T.S., D.V. and L.S. performed experiments; B.P., M.S., A.B.V., E.L., B.H., A.T., T.S. and D.V. did data analysis; B.P., M.S., K.-J.K., L.S. and T.K. wrote the paper.

Corresponding authors

Correspondence to Karl-Josef Kallen or Lothar Stitz.

Ethics declarations

Competing interests

B.P., M.S., D.V., A.T., T.S., K.-J.K. and T.K. are employees of CureVac GmbH, a private company developing RNA-based vaccines and immunotherapeutics. B.P., M.S., K.-J.K., L.S. and T.K. are inventors on two patent applications claiming technical aspects of this work.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5 and Supplementary Figs. 1–5 (PDF 748 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petsch, B., Schnee, M., Vogel, A. et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 30, 1210–1216 (2012). https://doi.org/10.1038/nbt.2436

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2436

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing