Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor

Abstract

Infiltration, accumulation, and survival of chimeric antigen receptor T (CAR-T) cells in solid tumors is crucial for tumor clearance. We engineered CAR-T cells to express interleukin (IL)-7 and CCL19 (7 × 19 CAR-T cells), as these factors are essential for the maintenance of T-cell zones in lymphoid organs. In mice, 7 × 19 CAR-T cells achieved complete regression of pre-established solid tumors and prolonged mouse survival, with superior anti-tumor activity compared to conventional CAR-T cells. Histopathological analyses showed increased infiltration of dendritic cells (DC) and T cells into tumor tissues following 7 × 19 CAR-T cell therapy. Depletion of recipient T cells before 7 × 19 CAR-T cell administration dampened the therapeutic effects of 7 × 19 CAR-T cell treatment, suggesting that CAR-T cells and recipient immune cells collaborated to exert anti-tumor activity. Following treatment of mice with 7 × 19 CAR-T cells, both recipient conventional T cells and administered CAR-T cells generated memory responses against tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 7 × 19 CAR-T cells show improved immune function.
Figure 2: Complete regression of pre-established solid tumor by treatment with 7 × 19 CAR-T cells.
Figure 3: Infiltration of tumor tissues treated with 7 × 19 CAR-T cells by both T cells and DCs.

Similar content being viewed by others

References

  1. Duong, C.P., Yong, C.S., Kershaw, M.H., Slaney, C.Y. & Darcy, P.K. Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Mol. Immunol. 67 2 Pt A, 46–57 (2015).

    Article  CAS  Google Scholar 

  2. Srivastava, S. & Riddell, S.R. Engineering CAR-T cells: Design concepts. Trends Immunol. 36, 494–502 (2015).

    Article  CAS  Google Scholar 

  3. Ramos, C.A., Savoldo, B. & Dotti, G. CD19-CAR trials. Cancer J. 20, 112–118 (2014).

    Article  CAS  Google Scholar 

  4. Rosenberg, S.A. & Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  Google Scholar 

  5. Kakarla, S. & Gottschalk, S. CAR T cells for solid tumors: armed and ready to go? Cancer J. 20, 151–155 (2014).

    Article  CAS  Google Scholar 

  6. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    Article  CAS  Google Scholar 

  7. Luther, S.A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J. Immunol. 169, 424–433 (2002).

    Article  CAS  Google Scholar 

  8. Deng, W. et al. Use of the 2A peptide for generation of multi-transgenic pigs through a single round of nuclear transfer. PLoS One 6, e19986 (2011).

    Article  CAS  Google Scholar 

  9. Kim, J.H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6, e18556 (2011).

    Article  CAS  Google Scholar 

  10. Fry, T.J. & Mackall, C.L. Interleukin-7: master regulator of peripheral T-cell homeostasis? Trends Immunol. 22, 564–571 (2001).

    Article  CAS  Google Scholar 

  11. Bradley, L.M., Haynes, L. & Swain, S.L. IL-7: maintaining T-cell memory and achieving homeostasis. Trends Immunol. 26, 172–176 (2005).

    Article  CAS  Google Scholar 

  12. Jiang, Q. et al. Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev. 16, 513–533 (2005).

    Article  CAS  Google Scholar 

  13. Yoshida, R. et al. EBI1-ligand chemokine (ELC) attracts a broad spectrum of lymphocytes: activated T cells strongly up-regulate CCR7 and efficiently migrate toward ELC. Int. Immunol. 10, 901–910 (1998).

    Article  CAS  Google Scholar 

  14. Kellermann, S.A., Hudak, S., Oldham, E.R., Liu, Y.J. & McEvoy, L.M. The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3 beta are potent chemoattractants for in vitro- and in vivo-derived dendritic cells. J. Immunol. 162, 3859–3864 (1999).

    CAS  PubMed  Google Scholar 

  15. Tamada, K. et al. Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin. Cancer Res. 18, 6436–6445 (2012).

    Article  CAS  Google Scholar 

  16. Bracci, L. et al. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin. Cancer Res. 13, 644–653 (2007).

    Article  CAS  Google Scholar 

  17. Proietti, E. et al. Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice. J. Clin. Invest. 101, 429–441 (1998).

    Article  CAS  Google Scholar 

  18. Adachi, K. & Tamada, K. Immune checkpoint blockade opens an avenue of cancer immunotherapy with a potent clinical efficacy. Cancer Sci. 106, 945–950 (2015).

    Article  CAS  Google Scholar 

  19. Pellegrini, M. et al. IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 144, 601–613 (2011).

    Article  CAS  Google Scholar 

  20. Penaranda, C. et al. IL-7 receptor blockade reverses autoimmune diabetes by promoting inhibition of effector/memory T cells. Proc. Natl. Acad. Sci. USA 109, 12668–12673 (2012).

    Article  CAS  Google Scholar 

  21. Hou, L. et al. Type 1 interferon-induced IL-7 maintains CD8+ T-cell responses and homeostasis by suppressing PD-1 expression in viral hepatitis. Cell. Mol. Immunol. 12, 213–221 (2015).

    Article  CAS  Google Scholar 

  22. Heninger, A.K. et al. IL-7 abrogates suppressive activity of human CD4+CD25+FOXP3+ regulatory T cells and allows expansion of alloreactive and autoreactive T cells. J. Immunol. 189, 5649–5658 (2012).

    Article  CAS  Google Scholar 

  23. Pellegrini, M. et al. Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nat. Med. 15, 528–536 (2009).

    Article  CAS  Google Scholar 

  24. Zhong, X.S., Matsushita, M., Plotkin, J., Riviere, I. & Sadelain, M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol. Ther. 18, 413–420 (2010).

    Article  CAS  Google Scholar 

  25. Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).

    Article  CAS  Google Scholar 

  26. Till, B.G. et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119, 3940–3950 (2012).

    Article  CAS  Google Scholar 

  27. Zervos, E., Agle, S., Freistaedter, A.G., Jones, G.J. & Roper, R.L. Murine mesothelin: characterization, expression, and inhibition of tumor growth in a murine model of pancreatic cancer. J. Exp. Clin. Cancer Res. 35, 39 (2016).

    Article  Google Scholar 

  28. Förster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  Google Scholar 

  29. Luther, S.A., Tang, H.L., Hyman, P.L., Farr, A.G. & Cyster, J.G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl. Acad. Sci. USA 97, 12694–12699 (2000).

    Article  CAS  Google Scholar 

  30. Brown, F.D. & Turley, S.J. Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle. J. Immunol. 194, 1389–1394 (2015).

    Article  CAS  Google Scholar 

  31. Zenatti, P.P. et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat. Genet. 43, 932–939 (2011).

    Article  CAS  Google Scholar 

  32. Shochat, C. et al. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias. J. Exp. Med. 208, 901–908 (2011).

    Article  CAS  Google Scholar 

  33. Shochat, C. et al. Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood 124, 106–110 (2014).

    Article  CAS  Google Scholar 

  34. Zhang, L. et al. CCL21/CCR7 axis contributed to CD133+ pancreatic cancer stem-like cell metastasis via EMT and Erk/NF-κB pathway. PLoS One 11, e0158529 (2016).

    Article  Google Scholar 

  35. Shi, M., Chen, D., Yang, D. & Liu, X.Y. CCL21-CCR7 promotes the lymph node metastasis of esophageal squamous cell carcinoma by up-regulating MUC1. J. Exp. Clin. Cancer Res. 34, 149 (2015).

    Article  Google Scholar 

  36. Lal, S., Lauer, U.M., Niethammer, D., Beck, J.F. & Schlegel, P.G. Suicide genes: past, present and future perspectives. Immunol. Today 21, 48–54 (2000).

    Article  CAS  Google Scholar 

  37. Greco, R. et al. Improving the safety of cell therapy with the TK-suicide gene. Front. Pharmacol. 6, 95 (2015).

    Article  Google Scholar 

  38. Maude, S.L., Teachey, D.T., Porter, D.L. & Grupp, S.A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 125, 4017–4023 (2015).

    Article  CAS  Google Scholar 

  39. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    Article  CAS  Google Scholar 

  40. Yang, J. & Rader, C. Cloning, expression, and purification of monoclonal antibodies in scFv-Fc format. Methods Mol. Biol. 901, 209–232 (2012).

    Article  CAS  Google Scholar 

  41. Morgan, R.A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  CAS  Google Scholar 

  42. Geng, D. et al. Amplifying TLR-MyD88 signals within tumor-specific T cells enhances antitumor activity to suboptimal levels of weakly immunogenic tumor antigens. Cancer Res. 70, 7442–7454 (2010).

    Article  CAS  Google Scholar 

  43. Johnson, L.A. et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114, 535–546 (2009).

    Article  CAS  Google Scholar 

  44. Zheng, Z., Chinnasamy, N. & Morgan, R.A. Protein L: a novel reagent for the detection of chimeric antigen receptor (CAR) expression by flow cytometry. J. Transl. Med. 10, 29 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by research funds from Project for Development of Innovative Research on Cancer Therapeutics (P-DIRECT) 14532963 (to K.T.), Practical Research for Innovative Cancer Control, and Project for Cancer Research and Therapeutic Evolution (P-CREATE) 16770206 (to K.T.), by Japan Agency for Medical Research and Development (AMED), and Noile-Immune Biotech Inc.

Author information

Authors and Affiliations

Authors

Contributions

K.A. and K.T. designed the experiments, analyzed the data, and wrote the manuscript; K.A., Y.K., T.N., N.O., and Y.S. produced CAR-T cells for the study; and K.A. performed the in vitro and in vivo experiments.

Corresponding author

Correspondence to Koji Tamada.

Ethics declarations

Competing interests

K.T. and Y.S. hold stocks of Noile-Immune Biotech Inc. K.T. and Y.S. receive consulting fees from Noile-Immune Biotech Inc.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adachi, K., Kano, Y., Nagai, T. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol 36, 346–351 (2018). https://doi.org/10.1038/nbt.4086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.4086

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer