Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Orphan nuclear receptor TLX activates Wnt/β-catenin signalling to stimulate neural stem cell proliferation and self-renewal

Abstract

The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/β-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/β-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active β-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a β-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active β-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active β-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active β-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/β-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of TLX and Wnt7a in adult TLX-null brains and adult neural stem cells.
Figure 2: TLX activates Wnt/β-catenin/cyclin D1.
Figure 3: Wnt7a and active β-catenin stimulate neural stem cell (NSC) proliferation and self-renewal.
Figure 4: Inhibition of adult neural stem cell growth by Frzb and Axin.
Figure 5: Constitutively active β-catenin and Wnt7a rescued TLX siRNA-mediated proliferation deficiency in neural stem cells (NSCs).
Figure 6: Regulation of cell proliferation by Wnt/β-catenin in adult brains.
Figure 7: TLX–Wnt/β-catenin signalling regulates neural stem cell population in the adult brain.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Weiss, S. and van der Kooy, D. CNS stem cells: where's the biology (a.k.a. beef)? J. Neurobiol. 36, 307–314 (1998).

    Article  CAS  Google Scholar 

  2. Alvarez-Buylla, A. & Temple, S. Stem cells in the developing and adult nervous system. J. Neurobiol. 36, 105–110 (1998).

    Article  CAS  Google Scholar 

  3. Gage, F. H., Kempermann, G., Palmer, T. D., Peterson, D. A. & Ray, J. Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol. 36, 249–266 (1998).

    Article  CAS  Google Scholar 

  4. McKay, R. Stem cells in the central nervous system. Science 276, 66–71 (1997).

    Article  CAS  Google Scholar 

  5. Reynolds, B. A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574 (1992).

    Article  CAS  Google Scholar 

  6. Richards, L. J., Kilpatrick, T. J. & Bartlett, P. F. De novo generation of neuronal cells from the adult mouse brain. Proc. Natl Acad. Sci. USA 89, 8591–8595 (1992).

    Article  CAS  Google Scholar 

  7. Yu, R. T., McKeown, M., Evans, R. M. & Umesono, K. Relationship between Drosophila gap gene tailless and a vertebrate nuclear receptor Tlx. Nature 370, 375–379 (1994).

    Article  CAS  Google Scholar 

  8. Monaghan, A. P., Grau, E., Bock, D. & Schutz, G. The mouse homolog of the orphan nuclear receptor tailless is expressed in the developing forebrain. Development 121, 839–853 (1995).

    CAS  PubMed  Google Scholar 

  9. Shi, Y. et al. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 427, 78–83 (2004).

    Article  CAS  Google Scholar 

  10. Li, W. et al. Nuclear Receptor TLX Regulates cell cycle progression in neural stem cells of the developing brain. Mol. Endocrinol. 22, 56–64 (2008).

    Article  CAS  Google Scholar 

  11. Sun, G., Yu, R. T., Evans, R. M. & Shi, Y. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc. Natl Acad. Sci. USA 104, 15282–15287 (2007).

    Article  CAS  Google Scholar 

  12. Zhao, C., Sun, G., Li, S. & Shi, Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature Struct. Mol. Biol. 16, 365–371 (2009).

    Article  CAS  Google Scholar 

  13. Zhang, C. L., Zou, Y., He, W., Gage, F. H. & Evans, R. M. A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451, 1004–1008 (2008).

    Article  CAS  Google Scholar 

  14. Liu, H. K. et al. The nuclear receptor tailless is required for neurogenesis in the adult subventricular zone. Genes Dev. 22, 2473–2478 (2008).

    Article  CAS  Google Scholar 

  15. Nusse, R. & Varmus, H. E. Wnt genes. Cell 69, 1073–1087 (1992).

    Article  CAS  Google Scholar 

  16. McMahon, A. P., Gavin, B. J., Parr, B., Bradley, A. & McMahon, J. A. The Wnt family of cell signalling molecules in postimplantation development of the mouse. Ciba Found. Symp. 165, 199–212 (1992).

    CAS  PubMed  Google Scholar 

  17. Moon, R. T., Brown, J. D. & Torres, M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet. 13, 157–162 (1997).

    Article  CAS  Google Scholar 

  18. Willert, K. & Nusse, R. Beta-catenin: a key mediator of Wnt signaling. Curr. Opin. Genet. Dev. 8, 95–102 (1998).

    Article  CAS  Google Scholar 

  19. Clevers, H. C. & Grosschedl, R. Transcriptional control of lymphoid development: lessons from gene targeting. Immunol. Today 17, 336–343 (1996).

    Article  CAS  Google Scholar 

  20. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  21. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–342 (1996).

    Article  CAS  Google Scholar 

  22. Tetsu, O. & McCormick, F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  Google Scholar 

  23. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  Google Scholar 

  24. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  Google Scholar 

  25. Zhu, A. J. & Watt, F. M. β-Catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 126, 2285–2298 (1999).

    CAS  PubMed  Google Scholar 

  26. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998).

    Article  CAS  Google Scholar 

  27. Lee, S. M., Tole, S., Grove, E. & McMahon, A. P. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127, 457–467 (2000).

    CAS  PubMed  Google Scholar 

  28. Viti, J., Gulacsi, A. & Lillien, L. Wnt regulation of progenitor maturation in the cortex depends on Shh or fibroblast growth factor 2. J. Neurosci. 23, 5919–5927 (2003).

    Article  CAS  Google Scholar 

  29. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    Article  CAS  Google Scholar 

  30. Zechner, D. et al. β-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol. 258, 406–418 (2003).

    Article  CAS  Google Scholar 

  31. Zhou, C. J., Zhao, C. & Pleasure, S. J. Wnt signaling mutants have decreased dentate granule cell production and radial glial scaffolding abnormalities. J. Neurosci. 24, 121–126 (2004).

    Article  CAS  Google Scholar 

  32. Yu, H. M., Liu, B., Costantini, F. & Hsu, W. Impaired neural development caused by inducible expression of Axin in transgenic mice. Mech. Dev. 124, 146–156 (2007).

    Article  CAS  Google Scholar 

  33. Adachi, K. et al. Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells 25, 2827–2836 (2007).

    Article  CAS  Google Scholar 

  34. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  Google Scholar 

  35. Barth, A. I., Pollack, A. L., Altschuler, Y., Mostov, K. E. & Nelson, W. J. NH2-terminal deletion of β-catenin results in stable colocalization of mutant β-catenin with adenomatous polyposis coli protein and altered MDCK cell adhesion. J. Cell Biol. 136, 693–706 (1997).

    Article  CAS  Google Scholar 

  36. Hsieh, J. C. et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398, 431–436 (1999).

    Article  CAS  Google Scholar 

  37. Cadigan, K. M., Fish, M. P., Rulifson, E. J. & Nusse, R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93, 767–777 (1998).

    Article  CAS  Google Scholar 

  38. Zeng, L. et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997).

    Article  CAS  Google Scholar 

  39. Parr, B. A. & McMahon, A. P. Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature 395, 707–710 (1998).

    Article  CAS  Google Scholar 

  40. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  41. Jackson, E. L. et al. PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187–199 (2006).

    Article  CAS  Google Scholar 

  42. Hirabayashi, Y. et al. The Wnt/β-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131, 2791–2801 (2004).

    Article  CAS  Google Scholar 

  43. Lie, D. C. et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375 (2005).

    Article  CAS  Google Scholar 

  44. Kuwabara, T. et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nature Neurosci. 12, 1097–1105 (2009).

    Article  CAS  Google Scholar 

  45. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).

    Article  CAS  Google Scholar 

  46. Song, H., Stevens, C. F. & Gage, F. H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).

    Article  CAS  Google Scholar 

  47. Taupin, P. et al. FGF-2-responsive neural stem cell proliferation requires CCg, a novel autocrine/paracrine cofactor. Neuron 28, 385–397 (2000).

    Article  CAS  Google Scholar 

  48. Lefstin, J. A. & Yamamoto, K. R. Allosteric effects of DNA on transcriptional regulators. Nature 392, 885–888 (1998).

    Article  CAS  Google Scholar 

  49. Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F. & Gage, F. H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487–8497 (1999).

    Article  CAS  Google Scholar 

  50. Tzahor, E. & Lassar, A. B. Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev. 15, 255–260 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jeremy Stark and John Zaia for a critical reading of the manuscript; Shengxiu Li and Richard Stewart for technical help; Mariko Lee and Brian Armstrong for microscopy support; Angela Barth (Stanford University) for the constitutively active β-catenin construct; Frank Costantini (Columbia University) for providing the axin cDNA; Andrew Lassar (Harvard Medical School) and Eldad Tzahor (Weizmann Institute) for providing the IgG and Frzb–IgG expression vectors and stably transfected cells; and Bert Vogelstein (Johns Hopkins University) for Topflash plasmid. Y.S. is a Kimmel Scholar. G.S. is a Herbert Horvitz Postdoctoral Fellow. F.H.G. is the Adler Professor of Age-Related Neurodegenerative Diseases and is supported by the National Institutes of Health (NIH) and the Picower Foundation. R.M.E. is an Investigator of the Howard Hughes Medical Institute at the Salk Institute and March of Dimes Chair in Molecular and Developmental Biology. This work was supported by the Whitehall Foundation, the Margaret E. Early Medical Trust and the NIH National Institute of Neurological Disorders and Stroke RO1 NS059546 (to Y.S.).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. conceived and designed the study. Y.S., Q.Q., G.S., W.L., S.Y., P.Y. and C.Z. performed the experiments and analysed the data. Y.S., Q.Q., G.S., F.H.G. and R.M.E. interpreted the data. Y.S. wrote the paper with comments from Q.Q., G.S., R.T.Y., F.H.G. and R.M.E.

Corresponding author

Correspondence to Yanhong Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Q., Sun, G., Li, W. et al. Orphan nuclear receptor TLX activates Wnt/β-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol 12, 31–40 (2010). https://doi.org/10.1038/ncb2001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing