Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion

Abstract

The increase of cell surface sialic acid is a characteristic shared by many tumor types. A correlation between hypersialylation and immunoprotection has been observed, but few hypotheses have provided a mechanistic understanding of this immunosuppressive phenomenon. Here, we show that increasing sialylated glycans on cancer cells inhibits human natural killer (NK) cell activation through the recruitment of sialic acid–binding immunoglobulin-like lectin 7 (Siglec-7). Key to these findings was the use of glycopolymers end-functionalized with phospholipids, which enable the introduction of synthetically defined glycans onto cancer cell surfaces. Remodeling the sialylation status of cancer cells affected the susceptibility to NK cell cytotoxicity via Siglec-7 engagement in a variety of tumor types. These results support a model in which hypersialylation offers a selective advantage to tumor cells under pressure from NK immunosurveillance by increasing Siglec ligands. We also exploited this finding to protect allogeneic and xenogeneic primary cells from NK-mediated killing, suggesting the potential of Siglecs as therapeutic targets in cell transplant therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A glycocalyx engineering approach to studying sialoside-dependent NK inhibition.
Figure 2: Glycopolymers enable controlled manipulation of cellular glycosylation status.
Figure 3: Sialoside glycopolymers protect target cells from NK cell–mediated cytotoxicity.
Figure 4: Siglec-7 provides a strong NK inhibitory signal in response to a sialic acid glycopolymer.
Figure 5: Sialylation status affects susceptibility to native and antibody-dependent NK cytotoxicity in multiple cancer lines.
Figure 6: Primary xenogeneic porcine and allogeneic hematopoietic stem cells are protected by Sia polymer incorporation.

Similar content being viewed by others

References

  1. Vivier, E., Ugolini, S., Blaise, D., Chabannon, C. & Brossay, L. Targeting natural killer cells and natural killer T cells in cancer. Nat. Rev. Immunol. 12, 239–252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zamai, L. et al. NK cells and cancer. J. Immunol. 178, 4011–4016 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Lanier, L.L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J. & Schreiber, R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Waldhauer, I. & Steinle, A. NK cells and cancer immunosurveillance. Oncogene 27, 5932–5943 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Mamessier, E. et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest. 121, 3609–3622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Fukuda, M. Possible roles of tumor-associated carbohydrate antigens. Cancer Res. 56, 2237–2244 (1996).

    CAS  PubMed  Google Scholar 

  10. Leivonen, M., Nordling, S., Lundin, J., von Boguslawski, K. & Haglund, C. STn and prognosis in breast cancer. Oncology 61, 299–305 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Dennis, J., Waller, C., Timpl, R. & Schirrmacher, V. Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin. Nature 300, 274–276 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Fuster, M.M. & Esko, J.D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5, 526–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Cohen, M. et al. Sialylation of 3-methylcholanthrene–induced fibrosarcoma determines antitumor immune responses during immunoediting. J. Immunol. 185, 5869–5878 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Van Rinsum, J., Smets, L.A., Van Rooy, H. & Van den Eijnden, D.H. Specific inhibition of human natural killer cell–mediated cytotoxicity by sialic acid and sialo-oligosaccharides. Int. J. Cancer 38, 915–922 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Yogeeswaran, G. et al. Correlation of glycosphingolipids and sialic acid in YAC-1 lymphoma variants with their sensitivity to natural killer-cell–mediated lysis. Int. J. Cancer 28, 517–526 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Ogata, S., Maimonis, P.J. & Itzkowitz, S.H. Mucins bearing the cancer-associated sialosyl-Tn antigen mediate inhibition of natural killer cell cytotoxicity. Cancer Res. 52, 4741–4746 (1992).

    CAS  PubMed  Google Scholar 

  17. Crocker, P.R., Paulson, J.C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Paulson, J.C., Macauley, M.S. & Kawasaki, N. Siglecs as sensors of self in innate and adaptive immune responses. Ann. NY Acad. Sci. 1253, 37–48 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Nicoll, G. et al. Identification and characterization of a novel siglec, Siglec-7, expressed by human natural killer cells and monocytes. J. Biol. Chem. 274, 34089–34095 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Ikehara, Y., Ikehara, S.K. & Paulson, J.C. Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J. Biol. Chem. 279, 43117–43125 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Avril, T., Floyd, H., Lopez, F., Vivier, E. & Crocker, P.R. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells. J. Immunol. 173, 6841–6849 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Nath, D. et al. Macrophage–tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology 98, 213–219 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takamiya, R., Ohtsubo, K., Takamatsu, S., Taniguchi, N. & Angata, T. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology 23, 178–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Belisle, J.A. et al. Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes. Mol. Cancer 9, 118 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kiessling, L.L. & Splain, R.A. Chemical approaches to glycobiology. Annu. Rev. Biochem. 79, 619–653 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Collins, B.E. & Paulson, J.C. Cell surface biology mediated by low affinity multivalent protein–glycan interactions. Curr. Opin. Chem. Biol. 8, 617–625 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Brown, J.M. et al. A sulfated carbohydrate epitope inhibits axon regeneration after injury. Proc. Natl. Acad. Sci. USA 109, 4768–4773 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Courtney, A.H., Puffer, E.B., Pontrello, J.K., Yang, Z.-Q. & Kiessling, L.L. Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation. Proc. Natl. Acad. Sci. USA 106, 2500–2505 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Collins, B.E. et al. High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. J. Immunol. 177, 2994–3003 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Rabuka, D., Forstner, M.B., Groves, J.T. & Bertozzi, C.R. Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes. J. Am. Chem. Soc. 130, 5947–5953 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Belardi, B., O'Donoghue, G.P., Smith, A.W., Groves, J.T. & Bertozzi, C.R. Investigating cell surface galectin-mediated cross-linking on glycoengineered cells. J. Am. Chem. Soc. 134, 9549–9552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hudak, J.E., Yu, H.H. & Bertozzi, C.R. Protein glycoengineering enabled by the versatile synthesis of aminooxy glycans and the genetically encoded aldehyde tag. J. Am. Chem. Soc. 133, 16127–16135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nicoll, G. et al. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via Siglec-7–dependent and –independent mechanisms. Eur. J. Immunol. 33, 1642–1648 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Blixt, O., Collins, B.E., van den Nieuwenhof, I.M., Crocker, P.R. & Paulson, J.C. Sialoside specificity of the Siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J. Biol. Chem. 278, 31007–31019 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Attrill, H. et al. Siglec-7 undergoes a major conformational change when complexed with the α(2,8)-disialylganglioside GT1b. J. Biol. Chem. 281, 32774–32783 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Daëron, M., Jaeger, S., Du Pasquier, L. & Vivier, E. Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol. Rev. 224, 11–43 (2008).

    Article  PubMed  Google Scholar 

  37. Falco, M. et al. Identification and molecular cloning of P75/Airm1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J. Exp. Med. 190, 793–802 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maki, G., Klingemann, H.G., Martinson, J.A. & Tam, Y.K. Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92. J. Hematother. Stem Cell Res. 10, 369–383 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Terme, M., Ullrich, E., Delahaye, N.F., Chaput, N. & Zitvogel, L. Natural killer cell–directed therapies: moving from unexpected results to successful strategies. Nat. Immunol. 9, 486–494 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Dall'Ozzo, S. et al. Rituximab-dependent cytotoxicity by natural killer cells influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res. 64, 4664–4669 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Triulzi, C. et al. Antibody-dependent natural killer cell–mediated cytotoxicity engendered by a kinase-inactive human HER2 adenovirus-based vaccination mediates resistance to breast tumors. Cancer Res. 70, 7431–7441 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. van der Touw, W. & Bromberg, J.S. Natural killer cells and the immune response in solid organ transplantation. Am. J. Transplant. 10, 1354–1358 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Murphy, W.J., Vinay, K. & Bennett, M. Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J. Exp. Med. 165, 1212–1217 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Murphy, W.J., Koh, C.Y., Raziuddin, A., Bennett, M. & Longo, D.L. Immunobiology of natural killer cells and bone marrow transplantation: merging of basic and preclinical studies. Immunol. Rev. 181, 279–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Li, S., Waer, M. & Billiau, A.D. Xenotransplantation: role of natural immunity. Transpl. Immunol. 21, 70–74 (2009).

    Article  PubMed  CAS  Google Scholar 

  46. Forte, P., Lilienfeld, B.G., Baumann, B.C. & Seebach, J.D. Human NK cytotoxicity against porcine cells is triggered by NKp44 and NKG2D. J. Immunol. 175, 5463–5470 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Marth, J.D. & Grewal, P.K. Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874–887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Avril, T., North, S.J., Haslam, S.M., Willison, H.J. & Crocker, P.R. Probing the cis interactions of the inhibitory receptor Siglec-7 with α2,8-disialylated ligands on natural killer cells and other leukocytes using glycan-specific antibodies and by analysis of α2,8-sialyltransferase gene expression. J. Leukoc. Biol. 80, 787–796 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kawasaki, Y. et al. Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology 20, 1373–1379 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Liang, Y.-J. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proc. Natl. Acad. Sci. USA 110, 4968–4973 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rabuka, D. et al. Hierarchical assembly of model cell surfaces: synthesis of mucin mimetic polymers and their display on supported bilayers. J. Am. Chem. Soc. 129, 5462–5471 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leonard, J.P. et al. Epratuzumab, a humanized Anti-CD22 antibody, in aggressive non-Hodgkin's Lymphoma phase I/II clinical trial results. Clin. Cancer Res. 10, 5327–5334 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Ménard, S., Pupa, S.M., Campiglio, M. & Tagliabue, E. Biologic and therapeutic role of HER2 in cancer. Oncogene 22, 6570–6578 (2003).

    Article  PubMed  CAS  Google Scholar 

  54. Sommaggio, R., Pérez-Cruz, M. & Costa, C. Cellular studies for in vitro modeling of xenogeneic immune responses. Methods Mol. Biol. 885, 91–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Bryceson, Y.T., March, M.E., Ljunggren, H.-G. & Long, E.O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107, 159–166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Godal, R. et al. Lymphomas are sensitive to perforin-dependent cytotoxic pathways despite expression of PI-9 and overexpression of bcl-2. Blood 107, 3205–3211 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Bryceson, Y.T. et al. Functional analysis of human NK cells by flow cytometry. Methods Mol. Biol. 612, 335–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aalto, K. et al. Siglec-9 Is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in PET imaging of inflammation and cancer. Blood 118, 3725–3733 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Naviaux, R.K., Costanzi, E., Haas, M. & Verma, I.M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Paulson (Scripps Research Institute) for the gift of plasmids encoding Siglec-7 and Siglec-9; M. Boyce (Duke University) for the gift of pMSCV retroviral plasmids and advice; D. Raulet, M. Ardolino, A. Iannello, P. Drake and C. Hudak for advice and expertise; and B. Belardi and D. Rabuka for helpful discussion and manuscript critique. This work was funded by a grant from the US National Institutes of Health (R01 GM59907). J.E.H. was supported by a predoctoral fellowship from the US National Science Foundation. S.M.C. was supported by a postdoctoral fellowship from the US National Institutes of Health (F32DK095521).

Author information

Authors and Affiliations

Authors

Contributions

J.E.H. synthesized compounds, designed and performed the experiments, analyzed the data and prepared the manuscript. S.M.C. performed the experiments, analyzed the data, and revised the manuscript. C.R.B. directed the study and revised the manuscript.

Corresponding author

Correspondence to Carolyn R Bertozzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–16 and Supplementary Notes 1 and 2. (PDF 1836 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudak, J., Canham, S. & Bertozzi, C. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol 10, 69–75 (2014). https://doi.org/10.1038/nchembio.1388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1388

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer