Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

Abstract

We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1P29S) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1P29S showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutation spectrum in melanoma samples.
Figure 2: Schematic representation of PPP6C alterations.
Figure 3: Distribution of SCNAs and genes with high mutation loads in melanomas.
Figure 4: Crystal structure of RAC1P29S.
Figure 5: In vitro RAC1P29S binding to downstream effectors.
Figure 6: Cellular function of RAC1P29S compared to RAC1WT.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Bauer, J. et al. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 24, 345–351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chapman, P.B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ribas, A. & Flaherty, K.T. BRAF targeted therapy changes the treatment paradigm in melanoma. Nat. Rev. Clin. Oncol. 8, 426–433 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Jakob, J.A. et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer published online, doi:10.1002/cncr.26724 (16 December 2011).

  6. Pleasance, E.D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Nikolaev, S.I. et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat. Genet. 44, 133–139 (2012).

    Article  CAS  Google Scholar 

  8. Wei, X. et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat. Genet. 43, 442–446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berger, M.F. et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485, 502–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Curtin, J.A. et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135–2147 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Brash, D.E. & Haseltine, W.A. UV-induced mutation hotspots occur at DNA damage hotspots. Nature 298, 189–192 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Bernet, A. & Fitamant, J. Netrin-1 and its receptors in tumour growth promotion. Expert Opin. Ther. Targets 12, 995–1007 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Solomon, D.A. et al. Mutational inactivation of PTPRD in glioblastoma multiforme and malignant melanoma. Cancer Res. 68, 10300–10306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stark, M.S. et al. Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nat. Genet. 44, 165–169 (2012).

    Article  CAS  Google Scholar 

  15. Sivaram, M.V., Wadzinski, T.L., Redick, S.D., Manna, T. & Doxsey, S.J. Dynein light intermediate chain 1 is required for progress through the spindle assembly checkpoint. EMBO J. 28, 902–914 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harbour, J.W. et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330, 1410–1413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Onken, M.D. et al. Loss of heterozygosity of chromosome 3 detected with single nucleotide polymorphisms is superior to monosomy 3 for predicting metastasis in uveal melanoma. Clin. Cancer Res. 13, 2923–2927 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Li, J. et al. CONTRA: copy number analysis for targeted resequencing. Bioinformatics 28, 1307–1313 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Whiteman, D.C., Pavan, W.J. & Bastian, B.C. The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment Cell Melanoma Res. 24, 879–897 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kabbarah, O. et al. Integrative genome comparison of primary and metastatic melanomas. PLoS ONE 5, e10770 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Koga, Y. et al. Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Res. 19, 1462–1470 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Halaban, R. et al. Integrative analysis of epigenetic modulation in melanoma cell response to decitabine: clinical implications. PLoS ONE 4, e4563 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Fears, T.R. et al. Average midrange ultraviolet radiation flux and time outdoors predict melanoma risk. Cancer Res. 62, 3992–3996 (2002).

    CAS  PubMed  Google Scholar 

  24. Wennerberg, K., Rossman, K.L. & Der, C.J. The Ras superfamily at a glance. J. Cell Sci. 118, 843–846 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Hakoshima, T., Shimizu, T. & Maesaki, R. Structural basis of the Rho GTPase signaling. J. Biochem. 134, 327–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ménard, L. & Snyderman, R. Role of phosphate-magnesium–binding regions in the high GTPase activity of rac1 protein. Biochemistry 32, 13357–13361 (1993).

    Article  PubMed  Google Scholar 

  27. Reinstein, J., Schlichting, I., Frech, M., Goody, R.S. & Wittinghofer, A. p21 with a phenylalanine 28→leucine mutation reacts normally with the GTPase activating protein GAP but nevertheless has transforming properties. J. Biol. Chem. 266, 17700–17706 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, R., Cerione, R.A. & Manor, D. Specific contributions of the small GTPases Rho, Rac, and Cdc42 to Dbl transformation. J. Biol. Chem. 274, 23633–23641 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Ridley, A.J., Paterson, H.F., Johnston, C.L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Broekaert, S.M. et al. Genetic and morphologic features for melanoma classification. Pigment Cell Melanoma Res. 23, 763–770 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Viros, A. et al. Improving melanoma classification by integrating genetic and morphologic features. PLoS Med. 5, e120 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Crespo-Hernández, C.E., Cohen, B. & Kohler, B. Base stacking controls excited-state dynamics in A.T DNA. Nature 436, 1141–1144 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. Ziegler, A. et al. Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc. Natl. Acad. Sci. USA 90, 4216–4220 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Turajlic, S. et al. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res. 22, 196–207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Furney, S.J. et al. Genomic characterisation of acral melanoma cell lines. Pigment Cell Melanoma Res. 25, 488–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Li, M. et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat. Genet. 43, 828–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Flavell, J.R. et al. Down-regulation of the TGF-β target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood 111, 292–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Pollock, P.M. et al. High frequency of BRAF mutations in nevi. Nat. Genet. 33, 19–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Bauer, J., Curtin, J.A., Pinkel, D. & Bastian, B.C. Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J. Invest. Dermatol. 127, 179–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Vredeveld, L.C. et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 26, 1055–1069 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nogueira, C. et al. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis. Oncogene 29, 6222–6232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zeng, K., Bastos, R.N., Barr, F.A. & Gruneberg, U. Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J. Cell Biol. 191, 1315–1332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barr, F.A., Elliott, P.R. & Gruneberg, U. Protein phosphatases and the regulation of mitosis. J. Cell Sci. 124, 2323–2334 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Douglas, P. et al. Protein phosphatase 6 interacts with the DNA-dependent protein kinase catalytic subunit and dephosphorylates γ-H2AX. Mol. Cell. Biol. 30, 1368–1381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Manfredi, M.G. et al. Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin. Cancer Res. 17, 7614–7624 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Sehdev, V. et al. The Aurora kinase A inhibitor MLN8237 enhances cisplatin-induced cell death in esophageal adenocarcinoma cells. Mol. Cancer Ther. 11, 763–774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jensen, J.S., Omarsdottir, S., Thorsteinsdottir, J.B., Ogmundsdottir, H.M. & Olafsdottir, E.S. Synergistic cytotoxic effect of the microtubule inhibitor marchantin a from marchantia polymorpha and the Aurora kinase inhibitor MLN8237 on breast cancer cells in vitro. Planta Med. 78, 448–454 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Macarulla, T. et al. Phase I study of the selective Aurora A kinase inhibitor MLN8054 in patients with advanced solid tumors: safety, pharmacokinetics, and pharmacodynamics. Mol. Cancer Ther. 9, 2844–2852 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Chadee, D.N. et al. Mixed-lineage kinase 3 regulates B-Raf through maintenance of the B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proc. Natl. Acad. Sci. USA 103, 4463–4468 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Castets, M. et al. DCC constrains tumour progression via its dependence receptor activity. Nature 482, 534–537 (2012).

    Article  CAS  Google Scholar 

  51. Krimpenfort, P. et al. Deleted in colorectal carcinoma suppresses metastasis in p53-deficient mammary tumours. Nature 482, 538–541 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, A. et al. Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod-driven motility and cell-cycle progression. Dev. Cell 21, 722–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lindsay, C.R. et al. P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nat. Commun. 2, 555 (2011).

    Article  PubMed  CAS  Google Scholar 

  56. Xing, Y. et al. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127, 341–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Pai, E.F. et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Potterton, L. et al. Developments in the CCP4 molecular-graphics project. Acta Crystallogr. D Biol. Crystallogr. 60, 2288–2294 (2004).

    Article  PubMed  CAS  Google Scholar 

  59. Halaban, R. et al. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF(WT) melanoma cells. Pigment Cell Melanoma Res. 23, 190–200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Donnelly, M.P. et al. The distribution and most recent common ancestor of the 17q21 inversion in humans. Am. J. Hum. Genet. 86, 161–171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tworkoski, K. et al. Phosphoproteomic screen identifies potential therapeutic targets in melanoma. Mol. Cancer Res. 9, 801–812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kong, Y. Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98, 152–153 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Garla, V., Kong, Y., Szpakowski, S. & Krauthammer, M. MU2A—reconciling the genome and transcriptome to determine the effects of base substitutions. Bioinformatics 27, 416–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Sathirapongsasuti, J.F. et al. Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics 27, 2648–2654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thorvaldsdóttir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform published online, doi:10.1093/bib/bbs017 (19 April 2012).

  68. Koboldt, D.C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, Q. et al. CMDS: a population-based method for identifying recurrent DNA copy number aberrations in cancer from high-resolution data. Bioinformatics 26, 464–469 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, X., He, L., Wu, Y.I., Hahn, K.M. & Montell, D.J. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat. Cell Biol. 12, 591–597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, Y.I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Machacek, M. et al. Coordination of Rho GTPase activities during cell protrusion. Nature 461, 99–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Processing of X-ray diffraction data collected in oscillation mode. in Methods in Enzymology, Vol. 276 (eds. Otwinowski, Z. & Minor, W.) Ch. 20, 307–326 (Academic Press, New York, 1997).

  74. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  PubMed  CAS  Google Scholar 

  75. Hirshberg, M., Stockley, R.W., Dodson, G. & Webb, M.R. The crystal structure of human rac1, a member of the rho-family complexed with a GTP analogue. Nat. Struct. Biol. 4, 147–152 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Perrakis, A., Harkiolaki, M., Wilson, K.S. & Lamzin, V.S. ARP/wARP and molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 57, 1445–1450 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  79. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, B., Zhang, Y., Wang, Z. & Zheng, Y. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J. Biol. Chem. 275, 25299–25307 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Nagata, K. et al. The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. EMBO J. 17, 149–158 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Yale SPORE in Skin Cancer funded by the National Cancer Institute grant number 1 P50 CA121974 (principal investigator, R.H.), the Melanoma Research Alliance (a Team award to R.H., M.B., M.K. and D.F.S.), The National Library of Medicine Training grant 5T15LM007056 (P.E.), the Department of Dermatology (R.H.), Yale Comprehensive Cancer Center (M.K.), the National Health and Medical Research Council of Australia (N.K.H. and K.D.-R.), Gilead Sciences, Inc. (J.S., M.K., R.H. and T.J.B.) and a generous gift from Roz and Jerry Meyer (R.H., M.S. and H.M.K.). We thank C. Truini, W. Meng, B. Speed, E. Straka, A. Raefski, M. Scallion and S. Levin for technical support, P. Parsons, C. Schmidt and colleagues at the Queensland Institute of Medical Research for generously providing many of the melanoma cell lines, the Yale Center for Genome Analysis and the Northeastern Collaborative Access Team (NE-CAT) facility at the Advanced Photon Source at Argonne National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

M.K., R.H., R.P.L., J.S. and T.J.B. designed and supervised the study. Y.K., P.E., M.C., J.P.M., S. Ma, G.G. and A.C. performed the bioinformatic analyses. A.B., E.C., E.C.H., M.J.D., K.D.-R., K.K.K., N.K.H. and S. Mane collected and analyzed the melanoma samples and performed the sequencing and functional experiments. B.H.H. and T.J.B. performed the crystallographic studies. S.A., D.N., M.B., M.S., H.M.K., M.A.M. and R.S.L. provided the clinical specimens and the clinical annotation. D.E.B. and D.F.S. analyzed sun-related mutations. All authors contributed to the final version of the paper.

Corresponding author

Correspondence to Ruth Halaban.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauthammer, M., Kong, Y., Ha, B. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44, 1006–1014 (2012). https://doi.org/10.1038/ng.2359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2359

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer